镍离子交换树脂反洗反应
镍离子一般使用螯合性离子交换树脂吸附,使用硫酸再生;电镀废水中的铬离子一般是六价的阴离子,一般使用弱碱性阴离子交换树脂,使用氢氧化钠再生。
用CH-90可以吸附镍离子,铬的话,要看你是三价还是六价,都有不同的树脂可以处理。
2. 在离子交换法分离镍和钴实验中,树脂为什么始终要浸泡在溶液之中
我们与有研院合作的镍钴分离达到了预期效果,树脂为什么始终要浸泡在版溶液之中的问题,问得比较权含糊,你是指浸泡在什么溶液之中?如果长时间置放在设备中,树脂就会丢失水分的,干树脂是不具备离子交换的能力,同时也会滋生一些细菌和微生物导致污染树脂,所以如果设备运行后长时间停用,则应对树脂进行再生后,最佳方法是采用盐水浸泡,而不是用你镍钴溶液浸泡,否则树脂依然还会被污染。
3. 关于D301氢型与732钠型离子交换树脂处理含铬、镍混合废水
呵呵,这种抄方式寻找客户源,可取!顺带给个建议,采用争光ZGC258替代001x7(732)效果更佳。另外,二次聚合的001x7和异丁醇工艺生产的D301使用效果不佳哦。如有离子交换树脂使用方面的疑问,我可以为您详细解答。
4. 铜,镍离子一般用什么型离子交换树脂。还有进水的铜,镍离子上限为多少
DL105大孔离子交换树脂适合去除废水中的镍,锌,铜等金属离子。
5. 离子交换法分离检测铁离子,钴离子,镍离子实验中为什么交换柱在加入混合液前要用浓盐酸淋洗
树脂先用酸转型到氢型吧。是不是应该还用用纯水冲洗,再进混合液。
6. 水质中金属化合物的分离与富集的方法有哪些
总的来说,水体重金属污染修复治理采用以下两条基本途径,一是降低重金属在水体中的迁移能力和生物可利用性;二是将重金属从被污染水体中彻底清除。
2.1物理化学方法
2.1.1稀释法
稀释法就是把被重金属污染的水混入未污染的水体中,从而降低重金属污染物浓度,减轻重金属污染的程度。此法适于受重金属污染程度较轻的水体的治理,这种方法不能减少排入环境中的重金属污染物的总量,又因为重金属有累积作用,当重金属污染物在这些水体中的浓度达到一定程度时,生活在其中的生物就会受到重金属的影响,发生病变和死亡等现象,所以这种处理方法目前渐渐被否定。
2.1.2混凝沉淀法
许多重金属在水体溶液中主要以阳离子存在,加入碱性物质,使水体pH值升高,能使大多数重金属生成氢氧化物沉淀。另外,其它众多的阴离子也可以使相应的重金属离子形成沉淀。所以,向重金属污染的水体施加石灰、NaOH、Na2S等物质,能使很多重金属形成沉淀去除,降低重金属对水体的危害程度。这是目前国内处理重金属污染普遍采用的方法。例如黄明等[5],采用化学分类法对含铬、铜、镍的电镀废水,废水进行处理,取得良好效果。
2.1.3离子还原法和交换法
离子还原法是利用一些容易得到的还原剂将水体中的重金属还原,形成无污染或污染程度较轻的化合物,从而降低重金属在水体中的迁移性和生物可利用性,以减轻重金属对水体的污染。例如,电镀污水中常含有六价铬离子(Cr6+),它以铬酸离子(Cr2O72-)的形式存在,在碱性条件下不易沉淀且毒性很高,而三价铬毒性远低于六价铬,但六价铬在酸性条件下易被还原为三价铬。因此,常采用硫酸亚铁及三氧化硫将六价铬还原为三价铬。
离子交换法是利用重金属离子交换剂与污染水体中的重金属物质发生交换作用,从水体中把重金属交换出来,达到治理目的。经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。这类方法费用较低,操作人员不直接接触重金属污染物,但适用范围有限,并且容易造成二次污染。
2.1.4电动力学修复技术
电修复法是20世纪90年代后期发展起来的水体重金属污染修复技术,其基本原理是给受重金属污染的水体两端加上直流电场,利用电场迁移力将重金属迁移出水体。Ridha等[6]提出,在一个碳的毡状电极上,用电沉积法从工业废水中除去铜、铬和镍的技术。另外,可以用电浮选法净化含有铜、镍、铬和锌等重金属的工业污水。此外,近年来还有人把电渗析薄膜分离技术应用到污水重金属处理实践当中[7]。
2.2生物修复法
目前国内外利用生物修复水体重金属污染的研究很多,根据所用的生物对象不同,可分为以下三种。
2.2.1植物修复法
植物修复(Phytoremediation)是指利用特定植物实施污染环境治理的技术统称,通过植物对重金属元素或有机物质的特殊富集和降解能力来去除环境中的污染物,或消除污染物的毒性,达到污染治理与生态修复的目的。
自从美国科学家Chaney[8]在1983年首先提出利用植物来清除重金属污染的设想以来,很多国家开展了植物修复技术的研究和应用工作,并取得了长足进展。制约植物修复技术发展的一个关键问题,是要筛选出既能耐受重金属污染又能大量富集重金属的植物种类。迄今为止,国内外已有较多学者开展了利用植物修复重金属污染水体的研究,并得到了诸多有价值的成果,所采用的比较常见的植物有向日葵、燕麦、大麦、豌豆、烟草、印度芥菜、莴苣等。Salt等[9]研究指出,印度葵能从污水中积累不同的重金属。陈俊等[10]研究指出,李氏禾适宜于湿生环境中生长,且能对多种重金属产生较强的富集作用,在Cr、Cu、Ni等重金属污染水体的修复中表现出广阔的应用前景。凤眼莲、水芹能很好地除掉污水中的Cd、Cr和Cu等重金属[11]。
2.2.2动物修复法
应用一些优选的鱼类以及其它水生动物品种在水体中吸收、富集重金属,然后把它们从水体中驱出,以达到水体重金属污染修复的目的。水体底栖动物中的贝类、甲壳类、环节动物等也对重金属具有一定富集作用。如三角帆蚌、河蚌对重金属(Pb2+、Cu2+、Cr2+等)具有明显自然净化能力。但此法处理周期长,费用高,因此目前水生动物主要用作环境重金属污染的指示生物,用于污染治理的不多。牛明芬[12]发现蚯蚓对河流底泥中的Cd有明显富集现象。蚯蚓还能影响土壤微生物存在的种类、数量和活性[13],而微生物与重金属之间也存在着复杂的相互作用关系,影响着重金属存在的种类和有效性,因此可以改变植物对重金属的吸收和转移。Lasat认为研究土壤动物、微生物和植物之间的交互作用,对植物修复技术的进一步发展有重大意义[14]。
2.2.3微生物修复法
重金属污染水体的生物修复机理主要包括微生物对重金属的固定和形态的转化。前者是微生物通过带电荷的细胞表面吸附重金属离子,或通过摄取必要的营养元素主动吸收重金属离子,将重金属富集在细胞表面或内部;后者是通过微生物的生命活动改变重金属的形态或降低重金属的生物有效性,从而减轻重金属污染,如Cr6+转变成Cr3+而毒性降低,As、Hg、Se等还原成单质态而挥发,微生物分泌物对重金属产生钝化作用等[7]。研究表明,氰细菌和藻类的菌绒可有效除去污水中的重金属。硫酸还原细菌产生H2S,将重金属离子还原为ZnS、CdS和CuS等水溶性极低的硫化物沉淀下来,达到治理重金属污染的目的