青霉素制备过程过滤设备
❶ 青霉素的制取
不是发霉的物质就可以制取青霉素,需要特定的菌株才会产生青霉素,可以在专网上搜到很多:属
青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。
❷ 如何用简单的方法制造青霉素
原理:首先收集大量青霉,用营养液培养,接着讲培养液过滤,加上菜籽油并搅拌。搅拌之后将水分(精制培养液)抽取出来。通过上面的方法就将大部分的不溶性物质和脂溶性物质去除了。
将炭磨成粉末,加入精制培养液,让炭吸收青霉素。培养基营养成分含量应较丰富,以确保一定的营养菌体生长量,能保持生长过程中pH稳定。
将吸收了青霉素的炭放在分离管柱之类的容器内,以蒸馏水及酸性水洗净,然后用碱性水冲洗。那么分划出来的青霉素便会被分划在某个部分,浓缩再溶解出来,这就是分离管柱色层分离法。以琼脂培养基去培养葡萄球菌,进行药剂感受性测试,就可以将效果显著的分划判断出来。
(2)青霉素制备过程过滤设备扩展阅读:
青霉素的副作用中,过敏性休克是致命的,常引起人们的注意,而表现为脑病及周围神经损害的神经毒性作用易被忽略。
必须打消以往认为青霉素只要不过敏,就很少有中毒的观念,千万不要大剂量滥用青霉素(包括其它抗生素),必须用时,尽量少用静脉输注,老年人、小儿尤应慎用;此外,还须注意,青霉素与氨苄青霉素合用时,更易引起青霉素脑病的发生。
❸ 穿越回古代,怎么手工制作青霉素
我是一个爱幻想的人...如果你穿越时空..来到古代.碰上梅毒 感染 等疾病..我知道只有青霉素可以治好~~一个普通人..应该如何自己制造 青霉素哪... 古时候又没有工具~~
如果直接 吃发霉的橘子皮...应该不会治好吧...
所以必须培养青霉..然后进行过滤.. 在没有现代工具的情况下 个人治疗青霉素的简单办法!
首先请寻找大量发霉的东西!!包括水果 蔬菜 馒头等!在些东西应该很容易找到!!
没有??! 那就自己制造!!
对老!把橘子皮放在不要太干的地方,橘子皮等它烂,你会发现上面有小绿毛,那上面就有青霉!
如果想提纯,加大剂量请看下面!!
原理:首先收集大量青霉,用营养液培养,可以用玉米煮汁!
接着讲培养液过滤,加上菜籽油(就是菜油)并搅拌。搅拌之后将水分(精制培养液)抽取出来。因为青霉素是溶水的!大部分成分将保留在水里!通过上面的方法就将大部分的不容性物质和脂容性物质去除了。
❹ 高分悬赏 青霉素生产流程工艺图
天然青霉素
青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空;气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。
半合成青霉素
以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。
6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。
❺ 青霉素的配制方法
青霉素生产工艺过程
一、青霉素的发酵工艺过程
1、工艺流程
(1)丝状菌三级发酵工艺流程
冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养56h,1:1.5vvm)——一级种子培养液(27°C,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26°C,发酵,7天,1:0.95vvm)——发酵液。
(2)球状菌二级发酵工艺流程
冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24°C,发酵,7天,1:0.8vvm)——发酵液。
2、工艺控制
(1)影响发酵产率的因素
基质浓度 在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制 , 苯乙酸的生长抑制), 而后期基质浓度低限制了菌丝生长和产物合成 , 为了避免这一现象 , 在青霉素发酵中通常采用补料分批操作法 , 即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。这里必须特别注意的是葡萄糖的流加 , 因为即使是超出最适浓度范围较小的波动 , 都将引起严重的阻遏或限制 , 使生物合成速度减慢或停止。目前 , 糖浓度的检测尚难在线进 行 , 故葡萄糖的流加不是依据糖浓度控制 , 而是间接根据pH 值、溶氧或 C02 释放率予以调节。
(2)温度 青霉素发酵的最适温度随所用菌株的不同可能稍有差别 , 但一般认为应在25 °C 左右。温度过高将明显降低发酵产率 , 同时增加葡萄糖的维持消耗 , 降低葡萄糖至青霉素的转化率。对菌丝生长和青霉素合成来说 , 最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度 , 以利于青霉素的合成。
(3) pH 值 青霉素发酵的最适 pH 值一般认为在 6. 5 左右 , 有时也可以略高或略低一些 , 但应尽量避免 pH 值超过7.0, 因为青霉素在碱性条件下不稳定, 容易加速其水解。在缓冲能力较弱的培养基中, pH 值的变化是葡萄糖流加速度高低的反映。过高的流加速率造成酸性中间产物的积累使 pH 值降低; 过低的加糖速率不足以中和蛋白质代谢产生的氨或其他生理碱性物质代谢产生的碱性化合物而引起 pH 值上升。
(4)溶氧 对于好氧的青霉素发酵来说 , 溶氧浓度是影响发酵过程的一个重要因素。当溶氧浓度降到 30% 饱和度以下时, 青霉素产率急剧下降, 低于 10% 饱和度时, 则造成不可逆的损害。溶氧浓度过高 , 说明菌丝生长不良或加糖率过低, 造成呼吸强度下降, 同样影响生产能力的发挥。溶氧浓度是氧传递和氧消耗的一个动态平衡点, 而氧消耗与碳能源消耗成正比, 故溶氧浓度也可作为葡萄糖流加控制的一个参考指标。
(5)菌丝浓度 发酵过程中必须控制菌丝浓度不超过临界菌体浓度, 从而使氧传递速率与氧消耗速率在某一溶氧水平上达到平衡。青霉素发酵的临界菌体浓度随菌株的呼吸强度 (取决于维持因数的大小, 维持因数越大,呼吸强度越高) 、发酵通气与搅拌能力及发酵的流变学性质而异。呼吸强度低的菌株降低发酵中氧的消耗速率,而通气与搅拌能力强的发酵罐及黏低的发酵液使发酵中的传氧速率上升, 从而提高临界菌体浓度。
(6)菌丝生长速度 用恒化器进行的发酵试验证明,在葡萄糖限制生长的条件下,青霉素比生产速率与产生菌菌丝的比生长速率之间呈一定关系。当比生长速率低于0.015h-1时,比生产速率与比生长速率成正比, 当比生长速率高于 O. 015h-1时, 比生产速率与比生长速率无关 D 因此, 要在发酵过程中达到并维持最大比生产速率, 必须使比生长速率不低0.015h-1 。这一比生长速率称为 临界比生长速率。对于分批补料发酵的生产阶段来说, 维持0.015h斗的临界比生长速率意味着每 46h 就要使菌丝浓度或发酵液体积加倍, 这在实际工业生产中是很难实现的。事实上 , 青霉素工业发酵生产阶段控制的比生长速率要比这一理论临界值低得多, 却仍然能达到很高的比生产速率。这是由于工业上采用的补料分批发酵过程不断有部分菌丝自溶, 抵消了一部分生长, 故虽然表观比生长速率低, 但真比生长速率却要高一些。
❻ 青霉素原始生产方法是什么,在二战时期的
将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天(发酵过程中需补入苯乙酸前体及适量的培养基)。将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐
这个是实验室的萃取提纯方法,早期工业化生产流程和这个差不多,只是规模上的扩大
实验室培养青霉菌的培养基为察氏培养基,每1000ml察氏培养基中含:硝酸钠3g 磷酸氢二钾1g 硫酸镁(MgSO4·7H2O) 0.5g 氯化钾 0.5g 硫酸亚铁 0.01g 蔗糖 30g 琼脂 20g 水1000ml
工厂化生产工艺中也可用灭菌柚子皮或用土豆汁培养液培养。土豆培养液的制作方法为:去皮土豆20g,切成块加水,煮沸30min(可适当补水) ,用纱布过滤,滤液加蔗糖2g和琼脂3g左右,补足水至100ml
❼ 求一个青霉素分离纯化工艺的详细流程,最好是ppt格式,不是的话流程步骤全一点也行
1、将青霉素来发酵液冷却,过滤。
2、滤液源在pH2 ~ 2.5 的条件下,于萃取机内用醋酸丁酯进行多级逆流草取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。
3、青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。
4、产生的青霉素晶体再用转鼓式真空过滤器分离,青霉素晶体与无水乙醇混合,进一步除去杂质。
5、采用过滤和空气干燥等方法收集晶体。
❽ 青霉素的制备方法
天然青霉素与半合成青霉素生产方法完全不同。
【天然青霉素】
青霉素G生产可分为菌种发酵和提取精制两个步骤。①菌种发酵:将产黄青霉菌接种到固体培养基上,在25℃下培养7~10天,即可得青霉菌孢子培养物。用无菌水将孢子制成悬浮液接种到种子罐内已灭菌的培养基中,通入无菌空气、搅拌,在27℃下培养24~28h,然后将种子培养液接种到发酵罐已灭菌的含有苯乙酸前体的培养基中,通入无菌空气,搅拌,在27℃下培养7天。在发酵过程中需补入苯乙酸前体及适量的培养基。②提取精制:将青霉素发酵液冷却,过滤。滤液在pH2~2.5的条件下,于萃取机内用醋酸丁酯进行多级逆流萃取,得到丁酯萃取液,转入pH7.0~7.2的缓冲液中,然后再转入丁酯中,将此丁酯萃取液经活性炭脱色,加入成盐剂,经共沸蒸馏即可得青霉素G钾盐。青霉素G钠盐是将青霉素G钾盐通过离子交换树脂(钠型)而制得。
【半合成青霉素】
以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。
6APA是利用微生物产生的青霉素酰化酶裂解青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。
【青霉素浓缩法】
利用青霉素特异性地杀死野生型细胞、保留营养缺陷型细胞的方法。青霉素能抑制细菌细胞壁的合成,所以只能杀死生长繁殖中的细菌,而不能杀死停止分裂的细菌。在只能使野生型生长而不能使突变型生长的选择性液体培养基中,野生型被青霉素杀死,而突变型则不被杀死,从而淘汰野生型,使突变型得以浓缩。可适用于细菌和放线菌,是营养缺陷型突变体筛选的常用方法之一。
❾ 青霉素生产工艺流程
青霉素生产工艺过程
一、青霉素的发酵工艺过程
1、工艺流程
(1)丝状菌三级发酵工艺流程
冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养56h,1:1.5vvm)——一级种子培养液(27°C,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26°C,发酵,7天,1:0.95vvm)——发酵液。
(2)球状菌二级发酵工艺流程
冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24°C,发酵,7天,1:0.8vvm)——发酵液。
2、工艺控制
(1)影响发酵产率的因素
基质浓度 在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制 , 苯乙酸的生长抑制), 而后期基质浓度低限制了菌丝生长和产物合成 , 为了避免这一现象 , 在青霉素发酵中通常采用补料分批操作法 , 即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。这里必须特别注意的是葡萄糖的流加 , 因为即使是超出最适浓度范围较小的波动 , 都将引起严重的阻遏或限制 , 使生物合成速度减慢或停止。目前 , 糖浓度的检测尚难在线进 行 , 故葡萄糖的流加不是依据糖浓度控制 , 而是间接根据pH 值、溶氧或 C02 释放率予以调节。
(2)温度 青霉素发酵的最适温度随所用菌株的不同可能稍有差别 , 但一般认为应在25 °C 左右。温度过高将明显降低发酵产率 , 同时增加葡萄糖的维持消耗 , 降低葡萄糖至青霉素的转化率。对菌丝生长和青霉素合成来说 , 最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度 , 以利于青霉素的合成。
(3) pH 值 青霉素发酵的最适 pH 值一般认为在 6. 5 左右 , 有时也可以略高或略低一些 , 但应尽量避免 pH 值超过7.0, 因为青霉素在碱性条件下不稳定, 容易加速其水解。在缓冲能力较弱的培养基中, pH 值的变化是葡萄糖流加速度高低的反映。过高的流加速率造成酸性中间产物的积累使 pH 值降低; 过低的加糖速率不足以中和蛋白质代谢产生的氨或其他生理碱性物质代谢产生的碱性化合物而引起 pH 值上升。
(4)溶氧 对于好氧的青霉素发酵来说 , 溶氧浓度是影响发酵过程的一个重要因素。当溶氧浓度降到 30% 饱和度以下时, 青霉素产率急剧下降, 低于 10% 饱和度时, 则造成不可逆的损害。溶氧浓度过高 , 说明菌丝生长不良或加糖率过低, 造成呼吸强度下降, 同样影响生产能力的发挥。溶氧浓度是氧传递和氧消耗的一个动态平衡点, 而氧消耗与碳能源消耗成正比, 故溶氧浓度也可作为葡萄糖流加控制的一个参考指标。
(5)菌丝浓度 发酵过程中必须控制菌丝浓度不超过临界菌体浓度, 从而使氧传递速率与氧消耗速率在某一溶氧水平上达到平衡。青霉素发酵的临界菌体浓度随菌株的呼吸强度 (取决于维持因数的大小, 维持因数越大,呼吸强度越高) 、发酵通气与搅拌能力及发酵的流变学性质而异。呼吸强度低的菌株降低发酵中氧的消耗速率,而通气与搅拌能力强的发酵罐及黏低的发酵液使发酵中的传氧速率上升, 从而提高临界菌体浓度。
(6)菌丝生长速度 用恒化器进行的发酵试验证明,在葡萄糖限制生长的条件下,青霉素比生产速率与产生菌菌丝的比生长速率之间呈一定关系。当比生长速率低于0.015h-1时,比生产速率与比生长速率成正比, 当比生长速率高于 O. 015h-1时, 比生产速率与比生长速率无关 D 因此, 要在发酵过程中达到并维持最大比生产速率, 必须使比生长速率不低0.015h-1 。这一比生长速率称为 临界比生长速率。对于分批补料发酵的生产阶段来说, 维持0.015h斗的临界比生长速率意味着每 46h 就要使菌丝浓度或发酵液体积加倍, 这在实际工业生产中是很难实现的。事实上 , 青霉素工业发酵生产阶段控制的比生长速率要比这一理论临界值低得多, 却仍然能达到很高的比生产速率。这是由于工业上采用的补料分批发酵过程不断有部分菌丝自溶, 抵消了一部分生长, 故虽然表观比生长速率低, 但真比生长速率却要高一些。
(7)菌丝形态 在长期的菌株改良中 , 青霉素产生菌在沉没培养中分化为主要呈丝状生长和结球生长两种形态。前者由于所有菌丝体都能充分和发酵液中的基质及氧接触, 故一般比生产速率较高; 后者则由于发酵液黏度显著降低, 使气-液两相间氧的传递速率大大提高, 从而允许更多的菌丝生长 (即临界菌体浓度较高), 发酵罐体积产率甚至高于前者。
在丝状菌发酵中, 控制菌丝形态使其保持适当的分支和长度, 并避免结球 , 是获得高产的关键要素之一。而在球状菌发酵中, 使菌丝球保持适当大小和松紧 , 并尽量减少游离菌丝的含量, 也是充分发挥其生产能力的关键素之一。这种形态的控制与糖和氮源的流加状况及速率、搅拌的剪切强度及比生长速率密切相关。
3、 工艺控制要点
(1)种子质量的控制 丝状菌的生产种子是由保藏在低温的冷冻安瓿管经甘油、葡萄糖、蛋白胨斜面移植到小米固体上,25 °C 培养 7 天, 真空干燥并以这种形式保存备用。生产时它按一定的接种量移种到含有葡萄糖、玉米浆、尿素为主的种子罐内 ,26 °C 培养 56h 左右, 菌丝浓度达6%-8%, 菌丝形态正常, 按 10%-15%的接种量移人含有花生饼粉、葡萄糖为主的二级种子罐内,27°C 培养 24h, 菌丝体积 10%-12%, 形态正常, 效价在700D/ml左右便可作为发酵种子。
球状菌的生产种子是由冷冻管子孢子经混有O. 5% -1. 0 %玉米浆的三角瓶培养原始亲米孢子, 然后再移人罗氏瓶培养生产大米抱子 (又称生产米), 亲米和生产米均为25 °C静置培养, 需经常观察生长发育情况在培养到 3-4 天, 大米表面长出明显小集落时要振摇均匀, 使菌丝在大米表面能均匀生长, 待10 天左右形成绿色孢子即可收获。亲米成熟接人生产米后也要经过激烈振荡才可放置恒温培养, 生产米的孢子量要求每粒米300万只以上。亲米、生产米子孢子都需保存在 5 °C冰箱内。
工艺要求将新鲜的生产米 (指收获后的孢瓶在10天以内使用) 接人含有花生饼粉、玉米胚芽粉、葡萄糖、饴糖为主的种子罐内,28 °C 培养 50-60h当pH 值由6. 0-6. 5 下降至 5.5-5. 0, 菌丝呈菊花团状,平均直径在 100- 130μm, 每毫升的球数为 6万 -8万只, 沉降率在 85% 以上, 即可根据发酵罐球数控制在 8000-11000只/ml 范围的要求, 计算移种体积, 然后接入发酵罐, 多余的种子液弃去。球状菌以新鲜孢子为佳, 其生产水平优于真空干燥的孢子,能使青霉素发酵单位的罐批差异减少。
(2)培养基成分的控制
a. 碳源 产黄青霉菌可利用的碳源有乳糖、蕉糖、葡萄糖等。目前生产上普遍采用的是淀粉水解糖、糖化液 (DE 值 50% 以上) 进行流加。
b. 氮源 氮源常选用玉米浆、精制棉籽饼粉、麸皮,并补加无机氮源(硫酸氨、氨水或尿素)。
c. 前体 生物合成含有苄基基团的青霉素 G, 需在发酵液中加人前体。前体可用苯乙酸、苯乙酰胺, 一次加入量不大于0.1%, 并采用多次加入, 以防止前体对青霉素的毒害。
d. 无机盐加人的无机盐包括硫、磷、钙、镁、钾等, 且用量要适度。另外, 由于铁离子对青霉菌有毒害作用, 必须严格控制铁离子的浓度, 一般控制在30 μg/ml 。
(3)发酵培养的控制
a. 加糖控制 加糖量的控制是根据残糖量及发酵过程中的 pH 值确定 , 最好是根据排气中CO2 量及 O2 量来控制, 一般在残糖降至 0.6% 左右, pH 值上升时开始加糖。
b. 补氮及加前体 补氮是指加硫酸铵、氨水或尿素, 使发酵液氨氮控制在 O. 01%-0.05%,补前体以使发酵液中残存苯乙酰胺浓度为 0.05%-0.08% 。
c. pH 值控制 对pH 值的要求视不同菌种而异, 一般为 pH 6.4-6.8, 可以补加葡萄 糖来控制。目前一般采用加酸或加碱控制pH值。 d. 温度控制 前期 2 5- 2 6 °C, 后期 23 °C, 以减少后期发酵液中青霉素的降解破坏。e. 溶解氧的控制 一般要求发酵中溶解氧量不低于饱和溶解氧的30% 。通风比一般为1 : 0. 8L/(L • min), 搅拌转速在发酵各阶段应根据需要而调整。
f. 泡沫的控制 在发酵过程中产生大量泡沫, 可以用天然油脂, 如豆油、玉米油等或用化学合成消泡剂 " 泡敌 " 来消泡, 应当控制其用量并要少量多次加入, 尤其在发酵前期不宜多用, 否则会影响菌体的呼吸代谢
g. 发酵液质量控制 生产上按规定时间从发酵罐中取样 , 用显微镜观察菌丝形态变化来控制发酵。生产上惯称" 镜检 ",根据" 镜检 "中菌丝形变化和代谢变化的其他指标调节发酵温度, 通过追加糖或补加前体等各种措施来延长发酵时间, 以获得最多青霉素。当菌丝中空泡扩大、增多及延伸, 并出现个别自溶细胞, 这表示菌丝趋向衰老, 青霉素分泌逐渐停止, 菌丝形态上即将进入自溶期, 在此时期由于茵丝自溶, 游离氨释放, pH 值上升, 导致青霉素产量下降, 使色素、溶解和胶状杂质增多, 并使发酵液变蒙古稠, 增加下一步提纯时过滤的困难。因此, 生产上根据" 镜检 "判断, 在自溶期即将来临之际, 迅速停止发酵, 立刻放罐, 将发酵液迅速送往提炼工段。
❿ 个人如何制造青霉素!
1。用米磨成的汁水 + 用山芋磨成的汁水 作为培养基溶液(用个小碗)
2。将青霉移植进去(青霉就是找一个已经发霉的食物,上面的霉变物质刮下来就是),等1个星期。。。。培养中
3。拿一个小瓦罐(市场上有的,你买玻璃杯也可以)。用塑料薄膜封住顶部(不要用盖子),在薄膜上剪个小孔,拿一个漏斗,在漏斗里放医用棉花,把培养过的培养液体从棉花上倒下去。(有点像过滤)
4。在那个瓦罐里倒适量(培养液的3倍)的菜种油,搅拌吧~~
5。搅拌到最后会发现,罐子里的液体有3层(你看不见的,罐子不是透明的。)
6。这时候,你要用小勺子慢慢地把上层的油和脂弄掉!(相信你还是分的清什么是油什么是水=0=),只留下底部的水
7。将碳粉(自己弄去)加入罐子,搅拌吧~~
8。碳会吸收青霉成分,罐子里的液体会吸干。
9。取出碳,用蒸馏水(不要用其他水,否则就没用了,回污染的)洗涤碳,注意,一点点就好
10。用醋加水混合水洗涤碳
11。用海草汁水洗涤
12。重复步骤3的方法(再买一个瓦罐或者玻璃杯)过滤 13。将最后得到的液体分成每100CC一小杯。等上几天(标号哦,1,2,3,。。。。)
14。最后一步很难哦!在你的嘘嘘中用棉花棒蘸上少许,分别滴在小杯子的中央
15。等待。。。。。。。。。
16。过7天后,如果看到有一个中央没有青霉,只有周围一环有,就制作成了
17。用胶头滴管吸取环中的青霉,就是盘尼西林!!!!!!