含硫含氮废水处理工艺
Ⅰ 气提技术求助:谁能给我一些关于石化行业除硫除氨(硫离子S2-和氨氮混合污水)的气提污水处理工艺的参数
这个是含硫碱渣更贴切些,实在理解不了水质偏酸性
不能用普通废水的处理思路,有专门的处理工艺。
Ⅱ 化工高含硫废水如何净化处理
含硫化氢,二氧化硫的污水比较好处理:
1.用碱中和至PH 7-9;
2.采用兼氧-好氧的生物处理专工艺可达标排放。
(注:硫属含量太高最好稀释或采用气提预处理)
硫氧碳比较麻烦,可能的方案是:
在碱性条件下,用活性炭催化使其转化为无机硫,再按上述方法处理。
Ⅲ 含氨氮的废水用什么方法处理既能达到国家污水排放标准又经济实惠
这个不知道你氨氮含量是多少啊,
要是量大的话,得用吹脱法,就是用吹脱塔,内处理费用稍高容些。
接触氧化法,是最经济实用的方法了,不过得上污水处理厂,
要是再低点的话,嗯,用BAF生物滤池也不错。
要是单纯应付检查,可以适量采购点药剂,氨氮降,总氮不降,
好了,回答了这么多,楼主给分呗,若是还有问题HI我。
Ⅳ 如何处理含废硫酸的污水
1 浓缩法
该法是在加热浓缩废稀硫酸的过程中,使其中的有机物发生氧化、聚合等反应,转变为深色胶状物或悬浮物后过滤除去,从而达到去除杂质、浓缩稀硫酸的双重目的.这类方法应用较广泛,技术较成熟.在普遍应用高温浓缩法的基础上又发展了较为先进的低温浓缩法,下面分别加以介绍.
1.1 高温浓缩法
淄博化工厂三氯乙醛生产过程中有废硫酸产生,其中H2SO4质量分数为65%~75%、三氯乙醛质量分数为1%~3%、其它有机杂质的质量分数为1%.该厂将其沉淀过滤后,用煤直接加热蒸馏,回收的浓硫酸无色透明,H2SO4质量分数大于95%,无三氯乙醛检出,而沉淀物经碱解、蒸馏和过滤后可回收氯仿.该厂废硫酸处理量为4000t/a,回收硫酸创利润55万元/a.
日本木村-大同化工机械公司的废硫酸浓缩法是用搪玻璃管升膜蒸发和分段真空蒸发相结合,将废硫酸中H2SO4的质量分数从10%~40%浓缩到95%,其工艺可分为3段,前两段采用不透性石墨管加热器蒸发浓缩,后一段采用搪玻璃管升膜蒸发器浓缩,在每一段中H2SO4质量分数渐次升高,分别达到60%、80%和95%.加热过程采用高温热载体,温度为150~220℃,可将有机物转变为不溶性物质,然后过滤除去,该工艺以2t/h的规模进行中试,5a运转良好.该工艺适应能力很强,可用于含多种有机杂质的废硫酸的处理.
1.2 低温浓缩法
高温浓缩法的缺点在于:硫酸的强腐蚀性和酸雾对设备和操作人员的危害很大,实际操作非常麻烦.因此,近年来开发出了一种改进的浓缩法,称为汽液分离型非挥发性溶液浓缩法(简称WCG法).
WCG法的原理和工艺如下:将废稀硫酸由储槽用耐酸泵打入循环浓缩塔浓缩,然后经换热器加热后进入造雾器和扩散器强迫雾化并进一步强迫汽化,分离后的气体经高度除雾后进入气体净化器,净化后排放.分离后的酸液再度回到循环浓缩塔,经反复循环浓缩蒸馏,达到浓度要求后,用泵打入浓硫酸储罐.浓硫酸可作为生产原料再利用.其工艺流程见图1.
WCG法浓缩装置主要由换热器、循环浓缩塔和引风机组成.换热器材质为石墨,浓缩塔材质为复合聚丙烯,泵及引风机均为耐酸设备.
该法与高温浓缩法相比,蒸发温度低(50~60℃),蒸汽消耗量少,费用低(浓缩每吨稀硫酸耗电和蒸汽的费用约为30~60元).上海染化五厂生产分散深蓝H-GL产生的稀硫酸(H2SO4质量分数为20%),上海染化八厂、武汉染料厂、济宁染料厂生产染料中间体产生的稀硫酸,采用WCG法浓缩,都取得了明显的效果.
用WCG法浓缩稀硫酸应注意以下几点:
(1)在浓缩过程中若有固体物析出,会影响传热效果和废酸的分离;
(2)该装置非密闭,废酸中若有挥发性物质,会影响工作环境;
(3)装置的主体材料为复合聚丙烯,工作温度受主体材料的限制,不能超过80℃;
(4)该法仅适用于H2SO4质量分数小于60%的稀硫酸.
2 氧化法
该法应用已久,原理是用氧化剂在适当的条件下将废硫酸中的有机杂质氧化分解,使其转变为二氧化碳、水、氮的氧化物等从硫酸中分离出去,从而使废硫酸净化回收.常用的氧化剂有过氧化氢、硝酸、高氯酸、次氯酸、硝酸盐、臭氧等.每种氧化剂都有其优点和局限性.
天津染料八厂采用硝酸为氧化剂对蒽醌硝化废酸进行氧化处理,其操作过程为:将废酸稀释至H2SO4质量分数为30%,使所含的二硝基蒽醌最大限度地析出,经过滤槽真空抽滤后废酸进入升膜列管式蒸发器,在112℃、88.1kPa条件下浓缩,在旋液分离器中分离水蒸气和酸(此时H2SO4质量分数约为70%),废酸再流入铸铁浓缩釜(280~310℃,真空度为6.67~13.34kPa),用喷射泵带出水蒸气,使H2SO4质量分数达到93%,然后流入搪瓷氧化缸,加入浓硝酸(HNO3质量分数为65%)进行氧化处理,至硫酸呈浅黄色.反应中产生的一氧化氮气体用碱液吸收.
硫酸在高浓度(H2SO4质量分数为97%~98%)和高温条件下也具有较强的氧化性,它可以将有机物较为彻底地氧化掉.例如处理苯绕蒽酮废酸、分散蓝废酸及分散黄废酸时,将废酸加热至320~330℃,把有机物氧化掉,部分硫酸被还原成二氧化硫.这种方法由于硫酸浓度和温度太高,有大量的酸雾产生,会造成环境污染,同时还要消耗一定量的硫酸,使硫酸收率降低,因此其应用受到很大限制.
3 萃取法
萃取法是用有机溶剂与废硫酸充分接触,使废酸中的杂质转移到溶剂中来.对于萃取剂的要求是:
(1)对于硫酸是惰性的,不与硫酸起化学反应也不溶于硫酸;
(2)废酸中的杂质在萃取剂和硫酸中有很高的分配系数;
(3)价格便宜,容易得到;
(4)容易和杂质分离,反萃时损失小.
常见的萃取剂有苯类(甲苯、硝基苯、氯苯)、酚类(杂酚油、粗二苯酚)、卤化烃类(三氯乙烷、二氯乙烷)、异丙醚和N-503等.
大连染料八厂用氯苯对含二硝基氯苯和对硝基氯苯的废硫酸进行一级萃取,使废水中的有机物含量由30000~50000 mg/L下降到200~250mg/L.济南钢铁厂焦化分厂用廉价的C-I萃取剂和P-I吸附剂处理该厂的再生硫酸也得到了良好的效果.该工艺是将再生硫酸经C-I萃取剂萃取分离后再依次用P-I吸附剂和活性炭吸附处理得到纯净的再生硫酸.为防止腐蚀,萃取罐和吸附罐用铅作内衬.该厂废硫酸处理量为500t/a,回收硫酸250t,价值7.5万元.
与其它方法相比,萃取法的技术要求较高,萃取剂要同时满足上述4项要求并不容易,而且运行费用也较高.
4 结晶法
当废硫酸中含有大量的有机或无机杂质时,根据其特性可考虑选择结晶沉淀的方法除去杂质.
如南京轧钢厂酰洗工序排放的废硫酸中含有大量的硫酸亚铁,可采用浓缩-结晶-过滤的工艺来处理.经过滤除去硫酸亚铁后的酸液可返回钢材酸洗工序继续使用.
重庆某化工厂将H2SO4质量分数为17%的钛白废酸在常压下浓缩、析出的结晶熟化后过滤,滤渣经打浆及洗涤后即为回收的硫酸亚铁.滤液再在93.4kPa真空度下浓缩结晶过滤,可得到H2SO4质量分数为80%~85%的浓硫酸,第二次过滤的滤渣也转至打浆工序回收硫酸亚铁
Ⅳ 高氮污水用啥处理工艺
对于现阶段的污水处理水平来说:处理高氮污水,最好的办法还是A/O工艺,像上面同志说的那些流程,大多是辅助的,如果让我来做,我也会做,但是加药絮凝最好放在整个生化物理的前面
Ⅵ 含硫废水处理,急!!!
废水的物理化学复处理工制艺按如下步骤进行:1.加入氢氧化钙/石灰乳,部分重金属以氢氧化物形式析出;2.加入有机硫化物,其余重金属如镉和汞以硫化物形式析出;3.添加絮凝剂,形成易于分离的大粒子固体沉淀物;4.在澄清池/沉淀槽中固液分离,调整分离出废水PH值;5.采用箱式压滤机将所得泥浆脱水。
Ⅶ 含氮有机废水的特点是什么治理的关键是在哪里
含氮废水可以应用厌氧和兼性厌氧和好氧工艺经行处理。只要是通过微生物的消化和反硝化过程完成的。具体细节可以找相关资料翻阅。
Ⅷ 工业生产中含硫废水的排放会污染环境,需要对含硫废水进行处理与利用.(1)某制革厂含硫废水中主要含有
(1)①Na2S为强碱弱酸盐,S2-水解呈碱性,水解方程式为S2-+H2OHS-+OH-;
②1molNa2S转化为1molNa2SO4,失去8mol电子,而1molO2被还原,得到4mol电子,所以还原剂与氧化剂的物质的量之比为1:2,温度升高平衡常数增大,说明升高温度平衡向正反应移动,则正反应吸热,即△H>O,
故答案为:1:2;>;
(2)①中和含酸废水工业常用廉价的石灰水,故答案为:石灰水;
②H2S气体与足量NaOH溶液反应反应生成Na2S和水,反应的化学方程式为H2S+2NaOH=Na2S+2H2O,
故答案为:H2S+2NaOH=Na2S+2H2O;
③SO32-在酸性条件下放电生成H2S的过程为还原反应,电极反应式为SO32-+8H++6e-=H2S↑+3H2O,
故答案为:SO32-+8H++6e-=H2S↑+3H2O;
④已知:①2H2S(g)+O2(g)=2S(s)+2H2O(l)△H=-632.8kJ/mol,
②SO2(g)=S(s)+O2(g)△H=+269.8kJ/mol,
利用盖斯定律将①-②×2可得:2H2S(g)+3O2(g)=2SO2(g)+2H2O(l),
对应的反应热为:△H=(-632.8kJ/mol)-2×(+269.8kJ/mol)=-1172.4kJ/mol,
所以热化学方程式为2H2S(g)+3O2(g)=2SO2(g)+2H2O(l)△H=-1172.4kJ/mol,
故答案为:2H2S(g)+3O2(g)=2SO2(g)+2H2O(l)△H=-1172.4kJ/mol.
Ⅸ 含硫废水密闭静置氨氮和硫化物会降低吗
近年来,厌氧生物处理技术因其剩余污泥量少、节能、资源化程度高,成为国内外高浓度有机废水处理技术的发展趋势。用厌氧生物法取代目前制革废水普遍采用的好氧生物法对于降低产品成本、提高污水处理深度具有经济和环境的双重效益。但是,制革废水中高浓度的硫化物、硫酸盐对厌氧微生物的毒性抑制,使得这一技术在处理制革废水时受到诸多限制。此外,制革废水氨氮的达标排放也一直是困扰生化法的一项难题。 本课题针对这一问题,重点分析了低浓度氨氮废水亚硝化过程的影响因素,为SHARON反应器在制革废水中的应用进行了尝试性的探索。此外,研究了硫化物在厌氧污泥中的分布,废水中硫化物的毒性效应及其脱除机制,并结合UASB反应器的运行特点,微生物的特性分布、种群组成、生长变化规律等,探讨了UASB处理含硫有机废水的有效途径,为制革废水厌氧生物处理提供理论和实践依据,研究主要结果为: (1)低氨氮、低碱度废水快速实现亚硝化过程的控制因素为:进水碱度、pH值和FA.等。出水的pH值可以通过控制反应器内部的碱度来进行调节。控制进水碱度在113.1mg/L~269.7mg/L,HRT为48h,其亚硝酸累积率可达到67.15%,可完全实现低氨氮的亚硝化,其出水再经反硝化则氨氮有望达标。 (2)硫化钠对污泥产甲烷活性抑制作用主要有2个原因,硫化钠浓度低于120mgS/L时,产甲烷活性抑制主要由pH增加引起,超过120mgS/L后,抑制作用主要由液相中高浓度的硫化物引起;随着硫化物加入量的增加,液相硫化物浓度、污泥吸附量及H<,2>S逸出量均显著增加,而H<,2>S逸出量在160mgS/L时达到最大,污泥吸附趋于饱和: (3)pH对硫化物的逸出具有复杂的影响:pH酸性时,污泥产甲烷活性严重受抑可使气提效果不佳而限制H<,2>S的逸出速率,pH增加,污泥活性增加与H<,2>S释放量有明显对应趋势,pH>8后,液相中游离的H<,2>S逐渐减少,H<,2>S逸出受到抑制,大量的S<'2->集存于液相中,污泥对硫化物的吸附趋于饱和状态;温度升高,有利于污泥吸附的硫化物向液相中转移和H<,2>S逸出,35℃后,硫化物对产甲烷活性抑制变化不大。 (4)气提作用有助于水体中H<,2>S的脱除,硫化物浓度较高时利于硫脱除;进水流量、pH的升高,不利于H<,2>S的脱除;污泥吸附也随之增大。在进水pH稳定在6前提下,气提对硫化物的脱除效果最好。 (5)两相UASB反应器40d运行稳定后,两反应器底部的微生物活性均好于项部,产酸相中产酸菌大量富集,相分离较成功。整个运行中,进水有机负荷从 3.6KgCOD/(m<'3>·d)增至17.41KgCOD/(m<'3>·d),COD去除率稳定在80%左右。 (6)稳定运行时,进水COD和硫化物浓度分别为3000~4500mg/L和80~120mgS/L左右,pH9~10,系统运行参数为:进水流量1.0L/h左右,脱硫装置气提流量为30~35L/h。经系统处理后,总的COD去除率达到90%以上,出水COD浓度维持在300 mg/L,出水硫化物浓度均在10mg/L以内。 通过研究证明,含硫有机废水通过一级UASB+气提+二级UASB的组合工艺能有效的达到去除目的,同时也为制革工业废水中硫的回收和资源化利用提供了一个可行的途径。而含氮废水经前期处理后的低氨氮废水经亚硝化+反硝化工艺为制革废水的达标排放确立了新的方向。
收起∧
Ⅹ 氨氮废水处理的工艺流程
8. Bardenpho工艺
该工艺是在A/O工艺基础上,增设了一个缺氧段和好氧段,各段反应池均独立运行,混合液自第一好氧池回流至第一缺氧池而第二好氧池无混合液回流(因而须注意,第二缺氧池和第二好氧池并非组成一级A/O工艺)所增设的缺氧段和好氧段起强化脱氨和提高处理出水水质的作用。运行过程中,第一好氧池的内部回流混合液、原水中的有机基质及回流污泥进入第一厌氧池,进行反硝化脱氮。由于第一厌氧池进水中含有较多内碳源可利用因而具有较高的反硝化速率,但与其进水中的食料比有关。好氧一池的容积一般可按F./M为0.25考虑;在厌氧二池中,由于好氧二池出水中有机物浓度较低,同时也没有外加碳源因而反硝化菌主要通过内源呼吸作用,以细胞内碳源进行反硝化,因此反硝化效率较低,并与系统的污泥龄有关。但这种反硝化作用可有效地提高整个处理系统的反硝化程度,从而利于提高脱氮效率。必要时,可将少部分进水引入厌氧二池以适当补充碳源,提高其反硝化速率。该工艺中好氧二池的主要作用是进一步降低废水中的有机物浓度,同时改善出水的表观性状由于增设了厌氧二池和好氧二池强化处理作用,该工艺的脱氮效率可以高达90%~95%(城市污水)。
9. BABE工艺
在通常的废水生物处理工艺中,其污泥经浓缩的上层液或氧化处理后脱水滤液均需返回至主体工艺进行处理。由于污泥浓缩上层液或脱水滤液中富含氮,因而其向主体工艺的返回将增加主体工艺的处理负荷,从而影响处理出水中氮的指标。BABE在运行过程中将以A/O方式运行的处理工艺主流程中回流污泥的一部分分流入BABE间歇曝气池,BABE 所处理的对象为含有高浓度的TN的污泥浓缩上层液或污泥脱水滤液。通过BABE池的间歇曝气运行,不仅有效地延长了处理工艺的污泥龄,并可对其进液中的氮实现充分的硝化作用,同时由于BABE池的良好消化条件,即较低的有机负荷及良好的温度控制(一般将温度控制在30℃),有效地提高了污泥中硝化菌的数量。BABE池经间歇曝气后富含硝化菌的混合液、内回流与进水一起进入A/O工艺主流程,可实现充分的反硝化脱氮,强化了系统对氮的去处作用。