铜川污水处理
Ⅰ 铜川矿区地质环境保护规划
煤炭是我国重要的基础能源和原料,在国民经济中具有重要的战略地位。改革开放以来,煤炭工业取得了长足发展,煤炭产量持续增长,生产技术水平逐步提高,煤矿安全生产条件有所改善,对国民经济和社会发展发挥了重要的作用。但是随着煤炭资源的开发又出现了一系列的地质环境问题,如大气污染、土地压占、水资源破坏、地面塌陷等,影响到煤炭资源的开发和当地人民的生活。我们需要借鉴国内外先进的煤炭生产及环境治理经验,来减少或避免再出现上述的地质环境问题,同时对已经造成的地质环境问题进行治理,做到煤炭资源开发与环境的协调发展。
一、国内外煤矿区环境保护
1.从开采到利用综合考虑,统筹规划
从煤炭开采到利用的整个过程中,每一个环节对环境都会产生巨大的影响。这就要求从各个环节考虑,统筹规划,宏观调控,政府应根据各类情况在政策与税收等方面加以支持,使煤炭企业得以健康发展。从生产方面来讲,推行煤矿绿色开采,就是从广义的资源角度上认识和对待煤、瓦斯、煤矸石、水等一切可以利用的资源,基本出发点就是防止或尽可能减轻开采煤炭对环境和其他资源的不良影响,目标是取得最佳的经济效益和社会效益。
2.绿色开采技术和洁净煤技术
针对煤炭开采过程中出现的水土地资源破坏、瓦斯、地面塌陷、地裂缝、煤矸石等问题,实施绿色开采技术和洁净煤技术。绿色开采技术,主要包括保水采煤技术、煤与瓦斯共采技术、煤层巷道支扩技术与减少矸石排放技术、煤炭地下液化技术等,利用先进的生产技术最大限度地减轻或消除煤炭开采对环境造成的损害。洁净煤技术(CCT)是指煤炭开发和利用过程中旨在减少污染和提高效率的煤炭生产、煤炭加工、燃烧、转化和污染控制等新技术的总称。洁净煤技术的应用可以大幅度提高煤炭利用效率,减少污染物排放量,并可将煤炭高效地转化为液体、气体燃料,保障能源安全。
煤炭地下液化技术:煤炭液化技术是将固体的煤炭转化为液体燃料、化工原料和产品的先进洁净煤技术。采用煤炭液化技术在地下将煤炭直接液化,减少煤炭在运输和利用中对环境造成的影响。
煤层配采:我国煤矿大部分是多煤层开采,各煤层煤质不同,在确定煤层的开采方法与开采顺序时,改变单一煤层开采,尽可能对各煤层进行合理协调配采。减少矿井煤炭灰分和有害气体的含量,使硫化物含量低于国家要求的标准。煤层配采可减少地表沉陷强度。
煤矸石充填与改革巷道布置:在井下设立矸石分选系统,利用矸石充填技术,矸石不出井,利用煤矸石进行巷旁充填与采空区充填,既少开了巷道,又提高了巷道支护强度,减少矸石运至地面后对环境造成的污染。转变思想观念,加强巷道布置改革力度,尽量多开煤层巷道,少开掘矸石巷道。利用矸石充填技术,还可以减少和预防地面沉降及地表塌陷的产生。
煤层气开采:铜川矿区的焦坪矿区煤层含有大量的瓦斯,积极进行煤层气开采技术研究,提高瓦斯抽放效果,为社会提供洁净能源,既保证了煤矿的安全生产,又提高了矿区的经济效益。
推广房柱式与条带式开采:在矿山浅部煤层采用房柱式与条带式采煤法,同时对其他煤层进行间歇式开采和煤种配采,可有效地防止地表沉陷。
修改煤炭技术政策和规范,转变思想,限制对环境会造成严重污染煤层的开采强度,浅地表煤层限量开采,待以后技术成熟后再进行开采。
利用先进的煤炭深加工技术:目前水煤浆技术已通过工业性试验,国家应重视并加大推广水煤浆技术的力度,减小大型企业因直接利用原煤对环境造成的污染。积极开展煤变油的试验研究,既缓解石油紧缺的局面,又加强了环境保护工作。
粉煤灰处理技术:火电厂燃烧后的粉煤灰加入一定量的方解石等化学物质,使燃烧后的粉煤灰直接作为水泥骨料,或应用到其他行业中,使粉煤灰得到综合利用。
充分利用矿井水资源:有些煤矿排出的矿井水经过简单的沉淀处理后,即可浇灌农田,可缓解我国北方干旱的局面。对矿井水进行深层次的处理后,完全可以达到生产和生活用水标准。
二、铜川矿区的地质环境保护规划
(一)地质环境保护规划的原则
总体采取防治结合的原则。“防”主要是针对在未来煤炭开采中尽可能地减少环境问题的产生,实施绿色矿山战略;“治”是针对已经产生的环境问题和随着煤炭的开采而出现的问题进行规划和治理。对未来可能产生的地质环境问题以“防”为主,以“治”为辅;对已经产生的地质环境问题以“治”为主,以“防”为辅,防止环境的进一步恶化。当务之急,对以前因煤炭资源的开发和利用而产生的各种地质环境问题进行调查、规划和治理,以改善矿区的地质环境。
1.结合铜川的环境保护规划,实施铜川矿区的地质环境保护规划
针对铜川环境问题众多和煤炭资源面临枯竭的形势,铜川已经进行了产业结构、环境保护的规划。铜川矿区的地质环境保护规划要符合铜川市的统一规划。一个城市的发展和产业转型都需要统一的规划,不能各自为政。企业与城市之间要互相配合,协调发展。
2.实施绿色矿山战略
正如朱训在“关于矿业城市可持续发展战略的思考与建议”报告中提出的那样:“树立环境也是生产力的新观念,保护好矿业城市的生态环境。”针对煤炭资源的开发,要综合考虑,统筹规划。从煤炭的开采到利用的每一个环节都要考虑,统筹兼顾。在煤炭资源开发的同时,要尽量减少对水资源、土地、大气等环境和其他资源造成的损害,同时尽可能地实现瓦斯、煤矸石、水资源等的综合利用,以获得最大的经济效益和社会效益。
(二)地质环境保护具体规划
1.水资源的保护规划
(1)矿井水资源化
铜川区和焦坪区各矿井,均要充分发挥污水处理厂的作用,进行不同程度的污水处理,使之满足不同的需要,实现污水资源化,同时也可以缓解各个矿区供水紧张的局面。
铜川区矿井属于缺水矿井,除了金华山矿矿井涌水量较大,部分外排至庞河外,其余4个矿井的矿井水大部分又复用于井下,基本未外排。但是铜川区的东坡矿、鸭口矿和徐家沟矿未设立污水处理厂,矿井水只排到地表经简单沉淀后大部分又复用于地下。因此,铜川区的3个没有污水处理设施的生产矿井都需要建立污水处理厂,根据处理后的水的用途,进行不同的处理方式,外排水必须处理到达标排放。
焦坪区的3个矿井属于富水矿井,陈家山矿和玉华矿建有污水处理厂,经过处理后,部分井下复用,部分外排。下石节矿的矿井水排到地表,经沉淀处理后大部分又用于井下洒水降尘、灌浆、灭火等,冬季时水还不够矿井使用。因此,下石节矿也要建立污水处理厂,即使外排水量很小,也要进行处理,达标后排放。焦坪区一方面面临水源地受到破坏,供水紧张的局面,同时又外排大量的矿坑水,没有真正实现矿井水资源化。因此,焦坪区应加强污水处理力度,重新规划矿井水的利用方式,真正实现矿井水的循环利用和矿井水资源化。
玉华矿的洗煤厂采用洗水闭路循环技术,洗煤用水来自矿坑排水,而且煤泥在厂内回收,洗水全部复用。
(2)保水采煤
保水采煤是目前煤炭开采方面提倡的先进的绿色开采技术,通过改进开采方法、顶板管理办法等措施,使裂隙导水带的发育高度涉及不到上覆主要含水层,避免含水层中的水沿采动裂隙带渗漏进巷道,既破坏水资源,又增加排水量。研究地面塌陷与开采方式、采高、顶板管理办法等之间的关系,尽可能地减少地面塌陷的产生和裂隙带的发育高度,以避免大气降水、地表水和含水层中的水沿地面塌陷直接进入巷道。铜川矿务局已经委托中国矿业大学(北京)进行了焦坪矿区放采岩层与地表移动规律研究,并于2004年12月提交了研究报告。该报告揭示了水平煤层分段开采岩层移动的初始垮落、垮落扩展、移动稳定的发展过程以及岩层移动和岩层垮落带扩展的传播方式。报告研究结论认为:工作面间煤柱大于60m时,煤柱对采动覆岩有很好的支撑作用,地表沉降可得到有效控制,煤柱宽度小于20m时,支撑范围太小,多工作面将形成较充分的开采状态,地表下沉率显著增大;工作面开采宽度超过165m时,地表下沉率将有明显增加。这些研究结果为改进开采方式,减少地面塌陷等提供了科学依据。
焦坪区的矿井水的来源为大气降水沿风化裂隙和构造裂隙补给、第四系覆盖层渗漏补给、地表水沿导水断裂带补给、地表水和大气降水沿塌陷直接进入井下、含水层中的水沿裂隙导水带(裂隙带贯通上部含水层)补给、老窑积水补给及井下工业用水的汇聚。铜川区矿井水主要来源于大气降水的补给、老窑积水补给和井下工业用水的汇聚。
从采煤设计入手,采矿专家应与水文地质专家相互结合,优化出最佳的顶板管理办法,其目标是经济合理,技术可行,找到保护水资源环境与保证煤炭回采率的最佳结合点。铜川北区的采煤和顶板管理方法目前全部为放顶煤全陷,以前有的工作面采用的是长壁分层全陷。铜川区的采煤方法全部为长壁全陷(包括以前和现在)。这种采煤方法和顶板管理方法,非常不利于地下水资源的保护。矿井应与科研院所联合研究,设计新的采掘方案,探寻水资源保护与煤炭开采的优化方案(图5-20)。
图5-20 铜川矿区水环境保护规划图
2.煤矸石的治理和应用规划
铜川市区(三里洞矿、桃园矿、王家河矿、史家河矿)煤矸石作为火山灰质硅酸盐水泥的原料、水泥的混合材料、混凝土掺合料、混凝土集料和混凝土砌块加以应用。因为这些矸石山位于市区或紧临市区,影响较大,而且矿井已经关闭(仅桃园矿存在部分残采)。铜川东区(王石凹矿、史家河矿、李家塔矿、金华山矿、徐家沟矿、鸭口矿、东坡矿)的煤矸石作为水泥的混合材料、建筑材料、混凝土砌块加以应用。焦坪区的煤矸石可以用作生产免烧砖和煤矸石发电,由于焦坪区矿井的服务年限较长,且每年煤矸石的产生量较多,因此规划一煤矸石电厂。交通不便地区的煤矸石可进行覆土复垦,或进行无土复垦。铜川矿区2006年煤炭产量为967万t,产生煤矸石108.9万t,综合利用量是15万t,处置量是16.6万t,堆存量为60.5万t,年煤矸石的利用率仅为15.5%。铜川矿区现有煤矸石山16座,累计矸石堆存量约为2410万t,而整个铜川的煤矸石堆存量约为4200万t。煤矸石作为水泥原料、混凝土砌块、掺合料、混凝土集料、混凝土砌块、水泥的混合材料等的应用,每个生产单位的年利用量在几万吨至几十万吨之间,而煤矸石的堆存量和新产生量又较大,因此,在铜川市区和铜川东区应鼓励多种方法的应用。具体的各个矿井的煤矸石应用规划见图5-21。
图5-21 铜川矿区煤矸石资源化规划图
对现存煤矸石的治理措施:对于目前正在自燃的煤矸石进行灭火,可以采用黄土等惰性物质覆盖燃烧区的覆盖法、向燃烧区喷洒石灰乳或其他灭火浆液灌浇法以及将灭火材料制成浆液用机械注入矸石堆内部,通过“降温”和“隔氧”来灭火,从而消灭自燃和减少污染。对于堆放于各个沟谷中的煤矸石要进行覆土或是绿化,防止扬尘的产生。要在沟谷的底端修筑防御设施、排水设施,防止煤矸石的滑坍。对于煤矸石淋滤液要进行收集处理,防止造成土壤、地表水体和地下水的污染。
对于新排出的煤矸石,改变以往从山顶直接向下倾倒的方法。应实行分层堆放,层层压实,上覆黄土,边缘注浆等措施,防止煤矸石发生自燃和滑坡。当煤矸石的堆放厚度达到8~10m时,用机械把煤矸石推平压实,然后在其上方覆盖0.6~0.8m厚的黄土,再推平压实,然后方可在其上覆盖另一层的煤矸石。依此类推,实行层层压实,并上覆黄土,上一层比下一层向后退8m,整体呈梯田型。当矸石山饱和后,在最上层覆盖1.0~1.2m厚的黄土,并进行绿化。在层与层之间形成的梯形边坡上要采用打钻注浆的方式进行封闭隔氧。同时还要修建疏排水工程,防止煤矸石山发生滑坡。
3.地面塌陷的地裂缝的规划治理
铜川矿区地面塌陷和地裂缝现象普遍,对人民的生活和生产影响极大。铜川矿区的地面塌陷和地裂缝的规划治理按稳定区、正在发育区和未来可能发生区3类进行。
(1)稳定区的规划治理
对于地面塌陷已经稳定的地区,实行土地复垦,结合铜川市的总体规划,综合利用。其中铜川市区的稳定塌陷区按照铜川市区的发展规划,进行城市建设、土地复垦和生态重建;其他地方的塌陷稳定区应以生态修复为主(居民区除外),因地制宜地对矿山地质环境进行恢复治理,保持健康的生态环境即可。
(2)正在发育区的规划治理
对于地面塌陷和地裂缝正在发育的地区,要加强观测,密切注意地面塌陷和地裂缝的发育、变化情况,发现问题,及时处理,把危害降低到最小。同时应加强这方面的科学研究,掌握采空区地面塌陷和地裂缝的发育规律,为防止灾害的发生和治理灾害提供科学依据(图5-22)。
图5-22 铜川矿区地面塌陷治理规划图
(3)未来可能发生区的规划治理
在目前的情况下,铜川矿区的采空区全部存在地面塌陷和地裂缝问题。如何防止在未来的采空区再次出现同样的问题,是我们必须要考虑并逐步解决的问题。目前铜川矿区的开采方法为长壁全陷和放顶煤全陷,根据铜川矿区的地层结构,这种采煤方法必然会导致采空区地面塌陷和地裂缝的产生。这就需要研究采空区的沉陷规律,结合矿区的地层结构,改进开采方法和顶板管理方法,最大限度地减少地面塌陷和地裂缝的产生。
4.焦坪矿区瓦斯利用规划
在焦坪区规划一个瓦斯发电厂和一座瓦斯储备站。焦坪区矿井全部为高瓦斯矿井,据初步测算:北区煤层瓦斯的涌出量每分钟在150~180m3之间,按每立方米发3度电计算,每年可发电2.8亿度,相当于14万t优质煤炭发的电,可产生直接经济效益2200万元。这样既节约了资源,提高了资源的利用率,又避免了瓦斯排入大气中造成大气污染,可谓一举两得。瓦斯还是一种清洁能源,在焦坪区建立一个瓦斯储备站,可与铜川市的天然气并网,可以供居民生活燃气,还可以减少使用煤炭造成的环境污染。已在下石节矿建了一座瓦斯发电站,少量的瓦斯得到利用。
瓦斯发电投资小、回收快,一般3年左右即可收回全部投资。瓦斯发电成本低(与燃煤发电相比),因为瓦斯一般是作为废气排放的,瓦斯发电既节约了能源,又减少了对环境的污染。瓦斯发电技术成熟,设备完备,与矿井实际情况相结合即可实现。瓦斯发电站结构简单,易于安装。瓦斯发电耗气量大,耗气稳定,有利于开展CDM项目,获得减排资金的支持。瓦斯发电设备可在热电联产、备用电力和调峰等方面应用,前景广阔。
Ⅱ 我是铜川一家自来水厂的,二氧化氯发生器用什么
二氧化氯作为目前国际上公认的最新一代的广谱、高效、安全的消毒、杀菌、保鲜剂已得到广泛的应用.我国二氧化氯有国家标准GB/T20783-2006《稳定性二氧化氯溶》,主要用于生活饮用水、工业用水、废水和污水处理.也可用于医疗卫生行业、公共环境、食品加工、畜牧与水产养殖、种植业等领域的杀菌、灭藻、消毒及保鲜[1];卫生部GB2760-2006《食品添加剂使用卫生标准》也将二氧化氯列入食品添加剂中作防腐剂中,其标准HG3669-2000《食品添加剂 稳定态二氧化氯溶液》,适用范围果蔬保鲜、鱼类加工,同时也将二氧化氯列为食品加工助剂[2].虽然二氧化氯有相关国家标准规定,但二氧化氯在使用过程中还是出现各种问题.1、 二氧化氯的检测方法二氧化氯含量的测定原理是在酸化条件下,试样释放出具有氧化性的二氧化氯,二氧化氯与还原性物质发生氧化还原反应,产生易显色物或有色物质,然后用标准溶液滴定或比色法确定二氧化氯含量.然而由于种种原因,不同的标准或行业二氧化氯含量测定要求还是有或大或小的区别,HG3669-2000《食品添加剂 稳定态二氧化氯溶液》中测定的是“有效二氧化氯含量”,需要特定装置,试剂用碘化钾、硫酸、盐酸等,而该标准又按国标要求2001年强制执行;GB/T20783-2006《稳定性二氧化氯溶》中测定的是“二氧化氯含量”,所用试剂为碘化钾、硫酸、丙二酸等,即所谓“丙二酸碘量法”,然而“稳定性二氧化氯溶液”作为消毒剂申报国家卫生部批件时,检测的方法是按《消毒技术规范》(2002版)中的“五步碘量法”, 其结果是有较大差别的,而稳定性二氧化氯溶液在销售时又必须附卫生部产品批件,这很容易产生误解;再有,二氧化氯产品用于涉水批件时,省级疾控检测中心多采用的是GB/T5750.11-2006《生活饮用水标准检验方法消毒剂指标》中比色法,同一产品其检测结果也与上述不同.还有,农业部兽药典二氧化氯产品检测只需简单的碘化钾、盐酸等,即所谓“普通碘量法”.这样同一种产品,有5种“标准”检测方法,有5种不同含量.即使在卫生消毒一个方面,同一产品,其批件、证件、标准中二氧化氯含量不同,但其又相互支持,而在销售时又必须同时提供,这在市场销售和使用过程中会带来诸多问题.至少,作为消毒二氧化氯检测方法在同一领域应该一致.各行业和部委在尽可能的情况下,所有的二氧化氯产品检测方法都应该相同,形成所谓标准化.目前市场上有多种二氧化氯含量测试纸,但没有测试相对较准确的试纸,所谓进口二氧化氯测试纸,也只能对某一特定产品如“稳定态二氧化氯”有一定测试功能,对其他同一浓度不同种类产品如固体或液体二氧化氯消毒剂的浓度测定,确有很大区别;即是同一产品不同人员测试有时也会有较大的不同,这都是在实际应用中遇到的麻烦问题.2、 稳定性二氧化氯溶液和亚氯酸钠溶液的区别稳定性二氧化氯溶液(简称为稳定液)是运用稳定化技术将二氧化氯气体(纯度>98%)稳定在无机稳定剂溶液中,并且通过活化技术又能将ClO2重新释放出来的水溶液,二氧化氯含量≥2%;亚氯酸钠溶液是用工业氢氧化钠和过氧化氢溶液吸收二氧化氯发生器产生的二氧化氯气体生成的水溶液[3],按照HG3250-2001《工业亚氯酸钠》规定液体产品中亚氯酸钠含量≤50%.稳定液与亚氯酸钠溶液生产原理基本相同,稳定液中的二氧化氯(ClO2)是以亚氯酸盐(MClO2)的形式存在,而亚氯酸钠溶液的主要成分也是以亚氯酸盐(MClO2)形式存在,只是亚氯酸钠溶液含杂质较多,从这一点讲亚氯酸溶液与稳定液并无本质区别,也正是这一点容易造成稳定液市场的混乱[4].有些不良商家用固体亚氯酸钠加水溶解成溶液,澄清,加入一定的稳定剂、缓冲剂调节PH值等,生产的所谓“稳定液”,这种亚氯酸钠溶液式的“稳定液”与真正的稳定液在产品外观和使用过程中现象时一般使用者是没有能力鉴别的,这造成消毒杀菌效果的偏差,消费者甚至认为不如氯系消毒剂,并且在价格上对稳定液也有一定的扰乱,进而对真正的二氧化氯产生怀疑和误解.稳定液与亚氯酸钠溶液区别其实是别较多的,贺启环教授在《稳定性二氧化氯溶液与亚氯酸钠溶液的评估指标研究》一文中,有较详细说明,但是对使用者来说没有相应规范的检测方法,而稳定液国标中产品中指标只是简单加入丙二酸碘量法检测二氧化氯含量,其它的非二氧化氯成分如Cl2,ClO-,ClO2-,ClO3-,O2和杂质如氯化钠,氢氧化钠,碳酸钠,硫酸钠,硝酸钠等没有指标控制或控制不严格,建议标准明确控制各种指标,加以区别稳定液与亚氯酸钠溶液的不同,帮助使用单位鉴别真伪,存真去劣,并促进二氧化氯市场的繁荣.3、 二氧化氯的活化问题二氧化氯在食品加工中作防腐剂和食品加工助剂时,根据HG3669-2000《食品添加剂 稳定态二氧化氯溶液》规定活化剂必须是食品添加剂盐酸(简称盐酸),然而标准并没有规定一定量的稳定态二氧化氯溶液与多大浓度、多少比例的的盐酸活化,活化多长时间,活化顺序等,并且其它相关标准和规定也没有说明,只有所谓的“一般认为”的比例.而这些因素与活化产生二氧化氯多少有很大的区别,这就给使用者带来很大的自主空间,当然也会出现各种活化浓度,比例,时间和顺序等,产生各种问题.然在实际使用过程中,大部分用以10:1比例的柠檬酸作为活化剂使用,而标准起草者姚锦娟在《食品添加剂 稳定态二氧化氯溶液化工行业标准简介》一文中“使用时必须用食品添加剂盐酸作为活化剂,而不允许使用其他的活化剂” [5].这绝对是非规范的,但实际是存在的,稳定性二氧化氯溶液使用时也存在类似问题.国家相关部门应明示使用规范,预防问题产生,加大监督力度.在食品行业中,二氧化氯稳定液使用时大多用柠檬酸做活化剂,然经大量试验验证,使用柠檬酸等弱酸作活化剂一般仅能活化60%或更低的二氧化氯,即使延长活化时间,也难达到100%,也就是稳定液中所有ClO2不能以有效态二氧化氯全部转化出来,其余的以MClO2 、MClO、MClO3等形式存在使用液中,故各企业在使用时的参考浓度中,有多少是有效二氧化氯浓度,又有多少是ClO2-、ClO-、ClO3-等浓度,这也造成理论上一定浓度的二氧化氯能杀灭某中细菌或病毒,而实际使用中要配制大的多的二氧化氯浓度杀菌,理论与实际严重不符,容易产生错误认识. 4.二氧化氯使用时产生附带物问题二氧化氯在消毒时,有时会产生一些对作用物体本身有一定影响的副产物,这主要分两个方面,一个是二氧化氯产品活化的时同时产生MClO2 、MClO、MClO3等盐类;另一个是二氧化氯产品配方中所加入的活化剂、钝化剂、填充剂、发泡剂、粘合剂和润滑剂等成分,以及加入这些成分在使用过程中反应生产的产物和重金属等是否影响的被作用物体质量,这在食品行业消毒杀菌和涉水方面尤为重要,例如:有的二氧化氯产品为提高活化度和增加总有效氯含量,配方中加入二氯异氰尿酸(钠),2009年6月国家相关部门规定非紧急情况下禁止使用.这都是应非常注意的问题.
Ⅲ 铜川矿区地质环境保护规划及关键技术研究
根据铜川矿区煤炭开发引起的地质环境的变化,从水资源保护、地面塌陷和地裂缝的治理、矸石山的治理、煤矸石资源化及煤矿瓦斯利用的角度,探讨了铜川矿区地质环境保护技术方案。
一、现有的地质环境保护技术方案
1.矿井水处理
铜川矿区现有的8对生产矿井中,仅有4对矿井有污水处理设施,处理后的矿井水一部分用于井下洒水降尘,一部分排放到河流。没有污水处理的4个矿井的矿井水排到地面,经简单沉淀处理后,大部分用于井下生产,其余部分排放。
2.地面塌陷和地裂缝
铜川矿区的采空区全部存在地面塌陷和地裂缝的问题,这些问题的产生给人民的生产和生活带来了困难。为了了解采煤沉陷的规律,制定合理的防治和治理措施,铜川矿务局委托辽宁工程技术大学和采矿损害和控制中心进行了铜川矿区地面沉陷规律的研究,编制了“陕西省铜川矿区采煤沉陷情况报告”。报告中分析了地面沉陷的原因及地表移动规律,为防治地面沉陷提供了理论依据。对矿区中的地面沉陷和地裂缝进行了调查、观测,对出现的地裂缝进行了及时回填。
铜川矿区现生产矿井“三下”压煤十分严重(表5-6),占保有地质储量的21.8%,以鸭口矿最为严重,占32.8%。“三下”压煤中,建筑物下压煤所占比例最大,为总压煤量的89.8%,而建筑物下压煤中又以村庄下压煤为主,占其总量的74.1%。在目前的情况下,分布于各井田未采区的村庄不可能实施搬迁,严重影响矿井生产接续和开采效益。为了合理规划开采,提高煤炭资源的回收率和煤矿开采效益,将开采造成的影响降到最低,实现资源开发与环境保护协调发展。为此,铜川矿务局联合西安科技大学进行了“铜川矿区开采沉陷规律及水源地破坏研究”。报告总结了铜川矿区建筑物下不动迁试采工作面和大采深、小采高、小工作面的地表移动变形特征,从理论和实验两方面论证了其机理和可行性,同时,提出了在不同地质、开采条件下的工作面安全开采尺寸。
表5-6 矿区现生产矿井储量及“三下”压煤情况表单位:万t
3.煤矸石的治理和利用
铜川矿区的煤矸石主要以堆存的方式存在于各个沟谷之中,大部分未做任何处理,少部分进行了填埋处理。随着资源的日益紧张,煤矸石资源化已经成了绿色矿山的必然选择。铜川矿务局从20世纪70年代就开始了进行煤矸石利用的探索。据有关资料记载,1978年王家河矿在沸腾炉中使用煤矸石;20世纪80年代,曾建设了三里洞内燃矸石砖厂,但现在这两个矿井已经破产关闭。
现在,铜川矿务局下设有奥博公司水泥厂,每年用煤矸石作为原料烧制水泥,年利用煤矸石量为1.52万t。铜川矿务局每年还作为燃料出售部分黑矸,年利用量约为3.5万t。2006年建立了石节矿免烧砖厂,2007年3月建成并投入试生产,年利用煤矸石1.8万t。铜川矿区的矸石山大都处于自燃中或是已经自燃过,自燃过后产生的红矸出售给水泥厂,作为水泥的添加料。
虽然经过了上述各个途径的煤矸石综合利用,但是利用量与产生量相比,微不足道。2006年铜川矿区煤炭产量为967万t,产生煤矸石108.9万t。加大煤矸石的利用量,实现煤矸石的资源化仍是十分艰巨的任务。
二、铜川矿区地质环境保护关键技术方案
1.水资源保护的技术方案
铜川矿区水资源保护技术包括两个方面:一是矿井水的循环利用;一是保护煤炭开采区水资源少受破坏。
铜川区的矿井缺水问题突出,矿井水以酸性水为主。由于酸性矿井水的处理费用较高,而矿井的井下生产用水质量要求较低。当前对酸性矿井水的处理方法以化学中和法最为有效,因而,铜川区的矿井水以中和法为基础,结合各个矿井的具体情况,可采用直接投入法、膨胀过滤法和滚筒处理法。直接投入法是在酸性矿井水中直接加入石灰粉或石灰乳等碱性中和剂;膨胀过滤法是利用石灰石等固体中和剂,采用升流式膨胀滤池中和酸性矿井水;滚筒处理法是将石灰石等固体中和剂置于处理机滚筒内,使之在不断滚动、碰撞和磨碎过程中达到中和的目的。
图5-16 洗水闭路循环工艺流程
焦坪区的矿井水都是处理达标后排放,这里不再赘述。玉华矿洗煤厂采用洗水闭路循环技术,防止煤泥水排至厂外造成危害。选煤厂的洗水主要包括压滤机滤液水、高效浓缩机溢流水和煤泥沉淀池溢流水3部分,通过实施煤泥厂内回收,洗水闭路循环技术,达到洗水平衡、洗水全部复用的目标。下面是某矿的洗水闭路循环工艺流程(图5-16)。
煤炭开采对地表水资源的影响,主要是煤炭开采引起的地下水位的下降,泉水干涸,致使部分河流断流。煤炭开采中不达标的矿井水排放,引起地表水体的污染。煤矸石等矿井废弃物随意堆放,不采取处理措施,也会引起地表水的污染。因此,对地表水资源保护的主要问题就是对矿井水和煤矸石的治理,消除污染。
煤炭开采对地下水资源的影响主要为含水层、隔水层破坏,致使地下水的补给来源和径流途径发生变化,造成区域地下水位下降,甚至降低到隔水层。因此,对地下水资源的保护的技术方案就是要保护含水层和隔水层免遭破坏。这就要求改进采掘方式、顶板管理办法,防止和减少塌陷的产生,导水裂隙带的发育不要触及上覆含水层。如何防止地面塌陷的产生及裂隙带的发育高度问题,我国已经做了很多这方面的工作,为铜川矿区的各个矿井提供了依据。但是,每个矿的具体条件各不相同,铜川矿务局各矿井的水文地质条件也各不相同,具体的保护技术方案还要结合各个矿井的水文地质条件和采煤方法来确定。因此,为了尽可能地使地下水资源免受破坏,还需要产学研相结合,寻找地下水资源保护和煤炭回采率的最佳结合点。
2.地面塌陷和地裂缝灾害治理的技术方案
铜川矿区地面塌陷和地裂缝灾害的治理技术方案也包括两个方面:一是对已经产生地塌陷、地裂缝的治理技术方案;一是为了减少未来地面塌陷和地裂缝的产生的技术方案。
对于铜川市区的沉陷区,复垦后还是以工业用地为主,主要把沉陷区充填即可,因此,可以采用充填复垦。充填复垦可以利用矿区附近的煤矸石、粉煤灰、露天矿剥离废物等充填采煤塌陷地。
对于铜川市区以外的其他地方的沉陷区复垦以生态复垦、生物复垦为主。生态复垦是将土地复垦工程技术与生态工程技术结合起来,综合运用生物学、生态学、经济学、环境科学、农业科学、系统工程的理论,运用生态系统的物种共生和物质循环再生等原理,结合系统工程方法,针对破坏土地所设计的多层次利用的工艺技术。其目的在于促进各生产要素的优化配置,实现物质、能量的多级分层利用,不断提高其循环转换效率和土地生产力,获得较好的经济、生态和社会综合效益,走可持续发展的道路。它包括各种土地复垦工程技术的优选,农业立体种植、养殖、食物链结构、农林牧副渔业一体化等生态工程技术的选择,常常通过平面设计、食物链设计和复垦工程设计来实现。生物复垦技术是新兴的土地复垦技术,是当前国内外研究热点。生物复垦是根据复垦区土地利用方向,采取包括肥化土壤、微生物培肥等在内的生物方法,改变土壤新耕作层养分状况和土壤结构,增加蓄水、保水、保肥能力,创造适合农作物正常生长发育的环境,维护矿区生态平衡的技术体系。比如绿肥法,是改良复垦土壤、增加有机质和氮磷钾等多种营养成分的最有效方法。绿肥多为豆科植物,一般含有15%~25%的有机质和0.3%~0.6%的氮素,其生产力旺盛,在自然条件较差、较贫瘠的土地上都能很好的生长,根系发达,能吸收深层土壤的养分,绿肥腐烂后还有胶结和团聚土粒的作用,从而改善土壤的理化特性。其施用方法是在工程复垦地种植绿肥作物,待其成熟后压青翻入土壤,可采取单种、间种、套种等种植方式。对于地面塌陷区存在的地裂缝要及时回填,防止土壤养分和水分的流失。
防止地面塌陷和地裂缝的产生的技术就是改进采掘方法和顶板管理办法。我国在这方面已经做了很多的工作,铜川矿务局也做了很多的工作,力求减少地面塌陷的地裂缝的产生。20世纪90年代初,铜川矿务局根据已设7个观测站的实测最大下沉值,应用最小二乘法原理求得的回归预测经验公式,可以比较准确地预计一般开采工作面采后地表最大下沉值,在相似地质、开采条件下可以继续使用。铜川矿务局曾经联合辽宁工程大学和西安科技大学进行了“陕西省铜川矿区采煤沉陷情况报告”和“铜川矿区开采沉陷规律及水源地破坏研究”,对铜川矿区采煤沉陷的规律和主要影响因素进行模拟分析,并给出了研究结论。主要研究结论有:①铜川矿区地表下沉系数影响程度的排序为扰动程度系数—覆岩综合硬度—表土层厚度—工作面倾向长度—采厚。其中,扰动程度系数、工作面倾向长度、采厚与地表下沉系数正相关,覆岩综合硬度与地表下沉系数负相关。②采深是影响地表动态变形的主要因素,当采深较小时,开采影响传播到地表较快,地表下沉变化连续性差,最大下沉速度快,活跃期短,累计下沉量反而更大,地表移动总时间缩短;而当采深大时,地表移动启动较慢,下沉曲线平缓连续,下沉速度小,且变化也小,活跃期短或无活跃期。③开采速度与开采厚度对地表下沉速度及持续时间有重要影响。开采速度与厚度越大,最大下沉速度越大,活跃期越短而累计下沉量越大,移动总时间相应缩短。④黄土层厚度是影响地表动态移动规律的重要因素。随着土岩比的增加,地表下沉速度有增大的趋势,移动持续时间缩短。即土层越厚,活跃期内地表的移动变形会越激烈,由移动变形而产生的地表裂缝也将越多、越大。
3.煤矸石利用的技术方案
(1)黑矸和红矸作为水泥混合材料
铜川矿区的煤矸石山大部分存在自燃现象,甚至有的矸石山已经自燃了几十年,燃烧过的煤矸石变成了红矸,目前对于红矸的利用,一般情况下是作为水泥的混合材料,铜川矿区的部分红矸已出售给水泥厂作为配料使用。
生产不同种类的水泥,用作水泥混合材料的煤矸石要求是炭质泥岩和泥岩、砂岩、石灰岩(CaO含量>70%),通常选用煅烧煤矸石或是煤矸石自燃,煅烧煤矸石或自燃煤矸石含有活性二氧化硅和氧化铝,可以作为活性火山灰质混合材料使用。铜川矿区的煤矸石属于火山灰沉积蚀变而成的质量较高的矸石,其特点是化学成分稳定,硅铝含量较高的粘土类矿物,其化学成分见表5-7。
表5-7 铜川矿区煤矸石化学成分(wB/%)
用煤矸石作混合材料生产火山灰水泥的生产工艺流程与生产普通水泥的工艺流程基本相同,其生产流程见图5-17。
图5-17 煤矸石作水泥混合材料的工艺流程
(2)生产硅酸盐水泥
以煤矸石作为原料生产水泥,主要是根据煤矸石和粘土的化学成分相近,可代替粘土提供硅铝质原料,而且煤矸石能释放一定的热量,可节省部分燃料。煤矸石代替黄土配料特别易烧,主要是因为煤矸石中含有多种微量元素,如硫、氟、钛、钒、硼、锶、钡等,具有矿化作用,同时煤矸石含有热能,进入预热器后能加速物料的预分解,使产量大幅度增长,操作时各级预热器筒温度相应降低,不用投资就能达到8级预热器的效果。
根据陕西华峰建材公司生产火山灰质硅酸盐水泥中的经验,用煤矸石替代黄土作为原料生长硅酸盐水泥,具有众多的优点。煤矸石配料、掺加混合材料后的水泥早期、后期强度降低幅度小。相比混合材料掺量提高15%以上,减少孰料用量15%,增加红矸用量15%。孰料价格为180元/t,红矸价格按20元/t计,火山灰质硅酸盐水泥与普通硅酸盐水泥的差价为10元/t,计算可知每吨水泥的成本降低14元,年产8.5万t水泥,节约119万元。
利用煤矸石代替黄土作为水泥配料,能提高回转窑、水泥磨的台时产量和水泥质量,具有良好的经济效益和社会效益。
(3)煤矸石作混凝土掺合料
自燃煤矸石或燃烧煤矸石作为混凝土掺合料使用有3个方面的优势。一是能降低水泥用量,从而降低能源消耗;二是能大量利用煤矸石,降低对环境的污染;三是能改善水泥混凝土的性能,增加水泥混凝土的抗碳化和抗硫酸盐侵蚀等能力,提高混凝土制品质量和工程质量。这是实现煤矸石资源化、无害化处理的一个重要途径。
自燃煤矸石或烧煤矸石具有火山灰活性,活性二氧化硅和氧化铝能与水泥水化过程中析出的氢氧化钙发生缓慢的“二次反应”,生成水化硅酸钙和水化铝酸钙,与水泥浆硬化体坚固地结合起来,提高混凝土的抗掺性和耐久性。粉状煤矸石在混凝土中具有超出火山灰活性的特殊物理功能,如增加浆体的体积功能、填充浆体孔隙功能等,使煤矸石混凝土物理化学作用达到动态平衡,起到了使混凝土性能改善和质量提高的作用。
(4)煤矸石作混凝土集料
煤矸石中含有大量的硅铝物质,其中的可燃物质和菱铁矿在焙烧过程中析出气体并膨胀,因此,煤矸石是生产轻骨料的理想原料。煤矸石轻骨料一般是由含碳量不高的碳质岩类、泥质岩类煤矸石经破碎、粉磨、成球、烧胀、筛分而成,也可以将煤矸石直接破碎到一定比例直接焙烧而成。利用煤矸石制造的轻骨料,是具有良好保温性能的新型轻质建筑材料。
(5)白矸作为水泥混合材料和建筑材料
铜川矿区煤炭生产中产生的白矸,其主要成分为石灰岩和砂岩。砂岩经过加工可以作为建筑材料,也可以作为井下充填材料利用。石灰岩经过加工也可以作为建筑材料使用,同时也可以作为生产水泥或生石灰的原材料加以利用。
(6)煤矸石免烧砖
传统的烧结砖工艺对环境造成二次污染,而且对煤矸石有较强的选择性。采用煤矸石做原料生成免烧砖,原料选用重点是烧砖困难或不能烧砖的含铁、硫、钙、镁等较高的煤矸石。利用煤矸石制免烧砖,避免了传统制砖工艺造成的二次污染,同时显著提高了煤矸石原料的适应性,是今后煤矸石制砖的重要方向。
免烧是以自燃煤矸石或燃烧煤矸石为主要原料,用水泥、石及外加剂等与之配合,经搅拌、半干法压制成型、自然养护制成的一种砌筑材料,其主要工艺流程见图5-18。
(7)煤矸石混凝土砌块
以自燃或人工煅烧煤矸石为骨料,水泥等为胶结材料,加入少量外加剂,加水搅拌并经成型、自然养护而成的实心或空心砌块称为煤矸石混凝土砌块。煤矸石混凝土砌块性能稳定,具有质轻、高强、工艺简单、成本低、利废率高、使用效果好的优点,是一种很有发展前途的新型墙体材料。煤矸石混凝土砌块生产工艺简单易行,其工艺流程如图5-19所示。
煤矸石混凝土砌块的原材料包括集料、胶结料和外加剂。集料为自燃的煤矸石或烧煤矸石,符合JC/T541—94《自燃煤矸石轻集料》的要求即可。胶结料包括水泥、粉煤灰、自燃可烧煤矸石粉等。外加剂为石膏、生石灰等。
(8)煤矸石发电技术
含碳量高的煤矸石(含碳量≥20%,热值在6270~12550kJ/kg)可以直接作为流化床锅炉的燃料用来发电。用煤矸石燃烧产能发电工艺简单:首先,将煤矸石和劣质煤的混合物破碎,粉磨至粒径小于8mm;然后,由皮带机送入锅炉内在循环流化床上进行燃烧,流化床燃烧是靠从床底送进的高压气流使煤矸石粉粒在炉床上“沸腾”运动,形成一定高度的流化状态;最后,燃烧产生的烟尘经除尘器后送入烟道,燃烧产生的灰渣经水冷后泵入灰场。
图5-18免烧砖工艺流程
图5-19煤矸石砌块生产工艺流程图
4.瓦斯发电技术
瓦斯发电是以瓦斯气为能源、将瓦斯气中蕴含的热能转化为电能的能量转换过程。目前实用的瓦斯发电方式主要有燃气发动机、燃气轮机和汽轮发电机3种方式。下石节矿于2005年5月建立了3000kWh的瓦斯自备电厂。
5.煤与瓦斯共采技术煤层的采动会引起其周围岩层产生“卸压增透”效应,即引起周围岩层地应力封闭的破坏(地应力降低—卸压、孔隙与裂缝增生张开)、层间岩层封闭的破坏(上覆煤岩层垮落、破裂、下沉;下伏煤岩层破裂、上鼓)以及地质构造封闭的破坏(封闭的地质构造因采动而开放、松弛),三者综合导致围岩及其煤层的透气性系数大幅度增加,为卸压瓦斯高产高效抽采创造前提条件。
从卸压瓦斯流动通道观点看,采动破坏的造缝作用在采空区上方垂向方向上形成“三带”:垮落带(形成贯通采场的空洞与裂缝网络通道)、断裂带(形成层向与垂向裂缝网络通道)和弯曲下沉带(形成层内层向裂缝网络通道)。从卸压瓦斯流动观点看,岩层的垮落、自然充填的支撑和压实等作用,在采空区上方的横向方向上也产生“三带”:初始卸压增透增流带、卸压充分高透高流带和地压恢复减透减流带,这横向的“三带”在垂向的“断裂带”和“弯曲下沉带”内都存在。
煤层卸压时采动形成的煤(岩)体变形、破裂和裂隙伸张将大幅度地提高煤(岩)体瓦斯运移的透气性,产生“卸压增透增流”效应,形成瓦斯“解吸—扩散—渗流”活化流动的条件。因处在不同区域内的煤岩裂隙分布不同,瓦斯的解吸及流动条件不同,采用合理高效的瓦斯抽采方法和抽采系统,可实现瓦斯资源的安全、高效开采。瓦斯资源的开采减少了卸压煤层的瓦斯含量,消除了卸压煤层煤与瓦斯突出危险性,减少了瓦斯向工作面风流中的涌出量,从而为卸压煤层的安全高效开采创造了必要的条件。
以上只是煤与瓦斯共采技术的理论知识,具体的煤矿的地质条件和煤层情况各异,理论还要与实际相结合,进行产学研相结合,探讨焦坪区煤与瓦斯共采技术。煤矿瓦斯治理国家工程研究中心、淮南矿业集团、中国矿业大学、安徽建筑工程学院、安徽理工大学等单位产学研相结合,在淮南矿区进行合作攻关,系统地提出留巷钻孔法煤与瓦斯共采新方法,根据煤层群赋存条件,首采关键卸压层,沿采空区边缘沿空留巷实施无煤柱连续开采,在留巷内布置上、下向高、低位钻孔,抽采顶底板卸压瓦斯和采空区富集瓦斯的煤层瓦斯开采技术,并通过创新快速构建沿空留巷巷旁充填墙体技术,实现与综采工作面同步推进的煤与瓦斯高效共采的开采方法。创新了“沿空留巷围岩结构稳定性控制”、“巷旁充填材料研制与快速留巷充填工艺系统集成创新”和“留巷钻孔瓦斯抽采”等3项留巷钻孔煤与瓦斯共采技术。焦坪区可以参照淮南矿区的经验,结合焦坪矿区的地质条件、煤层特征和瓦斯特征及下石并进行科学研究,探讨适合的煤与瓦斯共采技术。
Ⅳ 陕西省有哪些污水处理厂 电话和地址有吗
西安市污水来处理厂西安市北石桥污源水净化中心铜川市污水处理厂宝鸡市十里铺污水处理厂陕西通达果汁集团有限公司礼泉污水净化厂渭南市污水处理厂延安市污水处理厂汉中市城市污水处理厂杨凌华都水质净化有限公司
我就找到这些,电话自己在网上查吧
Ⅳ 铜川市安帮清洁服务有限公司怎么样
铜川市安帮清来洁服务源有限公司是2016-06-27注册成立的有限责任公司(自然人投资或控股),注册地址位于陕西省铜川市新区正阳路街道新城村一组91号。
铜川市安帮清洁服务有限公司的统一社会信用代码/注册号是91610201MA6X61E882,企业法人刘庆利,目前企业处于开业状态。
铜川市安帮清洁服务有限公司的经营范围是:油烟机清洗、外墙清洗、玻璃墙清洗、管道清洗、空调设备维修及清洗、燃气锅炉设备维修及清洗;物业管理;室内外保洁服务、绿化养护、环保工程、垃圾清扫、收集运输服务、防虫灭鼠服务、污水处理、外墙粉刷、管道维修。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。
通过爱企查查看铜川市安帮清洁服务有限公司更多信息和资讯。