胱氨酸废水处理
★. 有没有靠谱的净水或纯水设备的厂家,求联系方式!
这要看你要的具体设备是什么了?之前我们工厂新上的一个纯水设备是悦纯的。当时是我负责这块,机器的安装调试都是悦纯工厂亲自来人做的,包括调试、试用、讲解全部都说的很清楚。我感觉他们服务和产品质量都挺好的,有需要你可以联系下,联系方式是 18156052550 (微信同号)
❶ 碱处理 为什么要引起 胱氨酸变化
L-半胱氨酸是半胱氨酸的一种同分异构体,L代表左旋,D代表右旋,是同种东西只是结构不回同而已,答天然半胱氨酸同时存在左旋和右旋两种,而人工而成的一般只有一种。 L-半胱氨酸碱是一种生物碱。 L-半胱氨酸可作为氨基酸强化剂
❷ 急急急!!!污水中氮和磷对环境有哪些危害分析生物脱氮除磷过程中不同阶段微生物作用的特点
第1 卷第1 期
2 0 0 0 年2 月
环境污染治理技术与设备
Techniques and Equipment for Environmental Pollution Control
Vol . 1 , No . 1
Feb . , 2 0 0 0
生物脱氮除磷工艺中的
微生物及其相互关系
X
郭劲松 黄天寅 龙腾锐
(重庆建筑大学城市建设学院,重庆400045)
摘 要
本文着重对近年来脱氮除磷微生物学方面的研究进展进行了综述,分析了生物脱氮除磷
反应器中各类功能微生物间的相互作用关系,营养物代谢机理和对处理效率的贡献,讨论了
脱氮除磷生物学应深入研究的一些问题。
关键词:废水处理 脱氮除磷 微生物
一、前 言
生物方法脱氮除磷由于其处理效率高、运行成本较低、污泥相对易处理,受到广泛重
视。目前已经发展了诸如A/ O、A2/ O、Bardenpho 、UCT、VIP、SBR 及氧化沟等较为成功
的脱氮除磷工艺。在生物脱氮除磷过程中,微生物的种类、数量和代谢活性以及它们之间
相互作用关系所形成的微生态系统的特征,直接影响着废水处理的效率。因此,分析研究
脱氮除磷微生物的种类及其相互作用的关系,对于生物脱氮除磷工艺的优化控制管理和
开发新工艺将会起到重要作用。
二、生物脱氮除磷活性污泥微生物组成
11 脱氮微生物
一般生物废水处理反应器内的微生物都能降解蛋白质、多肽、氨基酸、尿素等含氮化
合物以获得生命活动所需能量和其它小分子物质,并生成氨氮,这个过程称为氨化[1 ] 。
蛋白质的分解过程如下[2 ] :
蛋白质
蛋白酶
蛋白胨
蛋白酶
多肽
肽酶
氨基酸
不同微生物所具有的蛋白酶也不尽相同,如枯草杆菌有明胶酶和酪蛋白酶,而大肠杆
菌没有这两种酶,因此不能分解明胶和酪蛋白。污水中能分解蛋白质的微生物种类很多,
特别是假单胞菌属、牙孢菌属中某些种均能产生蛋白酶。真菌中的曲霉、毛霉和木霉也能
X 本研究得到国家自然科学基金资助(59838300)
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
产生蛋白酶分解蛋白质。
氨基酸被吸收进入微生物细胞后,有的转化为另一种氨基酸用于合成菌体蛋白质或
某些含氮化合物的合成。而另一部分氨基酸的降解主要通过脱氨基和脱羧基两种方式。
由于微生物类型、氨基酸种类与环境条件不同,脱氨方式也不同,主要有:
a. 氧化脱氮:在有氧条件下好氧微生物将氨基酸氧化成酮基酸和氨。
b. 还原脱氮:在厌氧条件下,专性厌氧菌和兼性厌氧菌将氨基酸还原成饱和脂肪酸和
氨。
c. 水解脱氮和减饱和脱氮:不同氨基酸经此两种方式脱氨生成不同的产物。如大肠
杆菌及变形杆菌水解色氨酸,生成吲哚、丙酮酸及氨;粪链球菌使精氨酸产生瓜氨酸;大肠
杆菌、变形杆菌、枯草杆菌和酵母菌等能将半胱氨酸分解为丙酮酸、氨和硫化氢。
硝化反应是在好氧状态下由亚硝酸菌( Nit rosomonas ) 与硝酸菌( Nit robacter) 共同完
成的。亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和硝酸球菌属等,硝酸菌有硝酸杆
菌、螺菌属和球菌属等,两者都属专性好氧菌。硝化细菌几乎生活在所有污水处理过程
中,它们都是革蓝氏染色阴性,具有强烈的好氧性,不能在酸性条件下生长,由于这两类细
菌不需要有机物作为养料,且是通过氧化无机的氮化合物得到所需的能量,故它们是化能
自养型的细菌[3 ] 。亚硝酸菌和硝酸菌以无机化合物CO2 -
3 、HCO -
3 及CO2 等为碳源,以
NH+
4 及NO -
2 为电子供体,O2 为电子受体,使氨氮氧化并合成新细胞,反应式可表示为:
55NH+
4 + 76O2 + 109HCO-
3
亚硝酸菌
C5H7NO2 + 54NO -
2 + 57H2O + 104H2CO3
400NO -
2 + NH+
4 + 4H2CO3 + HCO -
3 + 195O2
硝酸菌
C5H7NO2 + 3H2O + 400NO -
3
污水生物处理系统中微生物在无氧条件下大多具有反硝化能力,常见的有变形杆菌、
微球菌属、假单胞菌属、芽胞杆菌属等[4 ] 。这些细菌利用硝酸盐中的氧进行呼吸,氧化分
解有机物,将硝态氮还原为N2 或N2O ,其过程如下[5 ] :
NO -
3
硝酸盐还原酶
NO -
2
亚硝酸盐还原酶
NO
氧化氮还原酶
N2O
氧化亚氮还原酶
N2
Payne[6 ] (1973) 系统回顾了具有反硝化能力的废水处理微生物,指出有些类群只具有
硝酸盐还原酶,故只能将NO -
3 还原至NO-
2 ,如无色杆菌属、放线杆菌属、气单胞菌属、琼
脂杆菌属、芽孢杆菌属等;而其它类群由于具有反硝化中的全部酶系,因此能将NO-
3 还
原成N2 ,如微球杆菌属、丙酸杆菌属、螺菌属等。在所有反硝化菌中,有些是专性好氧菌,
有些是兼性厌氧菌。它们在好氧、厌氧或缺氧条件下,即使利用相同的有机基质,但通过
不同的呼吸途径,产生的能量不同,同时细胞产量也不同。此外,少数专性和兼性自养细
菌也能还原硝酸盐,如硫杆菌属细菌能以氢气还原性H2S 等无机物为电子供体,在厌氧
条件下利用NO -
3 作为电子受体来氧化还原性硫。
Kuenen J G等[7 ] (1987) 及Robert son L A. 等[8 ] (1992) 发现,许多异养型硝化细菌能
进行好氧反硝化反应,在产生NO -
3 和NO -
2 的过程中将这些产物还原,这为在同一反应
器中在同一条件下完成生物脱氮提供了可能。Vandegraaf 等[9 ] (1995) 研究发现异养硝
化、好氧反硝化细菌Thiosphaera pantot ropha 能把NH+
4 氧化成NO-
2 ,尔后通过反硝化途
径将NO-
2 (与外源提供的NO -
2 和NO -
3 一起) 还原为N2 ,从而完成脱氮。
1 期 郭劲松等:生物脱氮除磷工艺中的微生物及其相互关系 9
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Mnlder A 等[10 ] (1995) 发现氨确实可以直接作为电子供体进行反硝化反应,并称之
为Anaerobic Ammonium Oxidation (厌氧氨生物氧化) 。Vandegraaf 等[11 ] (1996) 通过研
究,证实了厌氧氨生物氧化是一个微生物过程,在厌氧分批培养中,氨与硝酸盐同时被转
化,仅有微量的亚硝酸盐积累,一旦硝酸盐耗尽,氨转化即停止,但其中起作用的菌属还待
进一步研究。
21 除磷微生物
在有氧条件下摄取磷,在厌氧条件下释放磷原理[12 ,13 ,14 ,15 ] ,目前已被普遍接受。
Fuhs 等[16 ] (1975) 对Baltimore Black River 和Seneca Falls 这两个具有很好除磷效果的污
水厂曝气池中的活性污泥进行检测,发现不动杆菌属( Acinetobacter) 与磷的去除密切相
关。Buchan[17 ] (1983) 研究分析了除磷效果良好的几个试验装置及污水厂的曝气活性污
泥,表明不动杆菌是其中的优势菌种,他认为废水生物除磷过程首先是富集不动杆菌属,
然后通过该菌过量吸收磷达到除磷的目的。此后,Lotter[18 ] (1985) ,Cloete 等[19 ] (1985) ,Bay2
ly 等[20 ] (1989) 和Beacham[21 ] (1990) 也分别在除磷活性污泥中检测到了大量的不动杆菌属。
然而,Brodich 等[22 ] (1983) 发现其生物除磷试验装置活性污泥的微生物中,不动杆菌属是少
数菌属,只占总量的1 %~10 %,而优势菌属为气单胞菌属和假单胞菌属。Hiraishi 等[23 ]
(1989) 比较了生物除磷工艺活性污泥与非除磷工艺活性污泥的微生物组成,发现两者中的
不动杆菌都不占优势,在除磷A/ O 法活性污泥中不动杆菌属只占大约1 %。由此可见不动
杆菌并不是唯一的除磷微生物,还有其它微生物的除磷能力也不容忽视。
Mino[24 ] (1987) 提出内源糖通过EMP 途径(酵解途径) 降解,获得的能量用来吸收醋
酸以合成PHB(聚羟基丁酸盐) ,除磷菌在厌氧段降解内源糖的反应式为:
CH2O + 0. 083C6H10O5 (CH) + 0. 44HPO2 -
3 + 0. 023H2O
1. 33CH1. 5O0. 5 (PHB) + 0. 17CO2 + 0. 44H3PO4
图1 厌氧状态放磷[ 21 ]
在好氧或有NO -
3 存在条件下,因消耗
PHB 及内源碳而建立起的三羧酸循环和呼
吸链产生氢离子,为维持细胞质子动力pmf
的恒定趋向,细胞吸收过量磷,并合成丰富的
Poly - P[25 ] 。除磷菌生化反应模型如图2 所
示。
31 具有反硝化能力的除磷菌(DPB)
在污水生物处理中,生物除磷通常是与
生物脱氮(硝化与反硝化) 工艺一起应用。如
图2 所示,有些除磷菌亦能利用NO -
3 作为电子受体,在吸收磷的同时进行反硝化。许多
研究者[27 ] [28 ,29 ,30 ]在活性污泥系统和实验室培养中发现了具有反硝化能力的除磷菌
(DPB) 。NO -
3 被用来氧化细胞内储存的PHB ,然后以氮分子的形式从废水中排除。这样
引起水体富营养化的氮、磷两大主要元素都被去除。Kuba[31 ] (1994) 发现DPB 除磷能力
与传统A/ O 工艺中普通除磷菌相似,同时也具有建立在内源PHB 和糖类物质(Carbohy2
drate) 基础上类似的生物代谢机理。在特定的条件下,除磷菌具有很强的反硝化能力。
1 0 郭劲松等:生物脱氮除磷工艺中的微生物及其相互关系 1 卷
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Kuba[32 ] (1997) 在Holten 污水处理厂的研究表明,约有50 %的除磷菌参与了反硝化活动。
图2 好氧/ 缺氧状态吸磷[ 26 ]
三、生物脱氮除磷工艺反应器中微生物关系
一般来说[33 ] ,微生物的相互关系有三种可能:第一,一种微生物的生长和代谢对另一
种微生物的生长产生有利影响,或者相互有利,形成有利关系,如生物间的共生和互生;第
二,一种微生物的生长与代谢对另一种微生物的生长产生不利影响,或者相互有害,形成
有害关系,如微生物间的拮抗、竞争、寄生和捕食;第三,两种微生物生活在一起,两者间发
生无关紧要、没有意义的相互影响,表现出彼此对生长和代谢无明显的有利或有害影响,
形成中性关系,如种间共处。
11 有利关系
微生物之间的有利关系可分为互生关系和共生关系。互生关系是微生物间比较松散
的联合,在联合中可以是一方得利,即一方为另一方提供或改善生活条件,或者是双方都
得利。而共生关系是两种微生物紧密地结合在一起,当这种关系高度发展时,就形成特殊
的共同体,在生理上表现出一定的分工,在组织和形态上产生新的结构。
生物脱氮系统中,互生关系主要表现为在化学水平的协作,即微生物间相互提供生长
因子、代谢刺激物或降解对方的代谢抑制物,平衡pH 值,维持适当的氧化还原电位或消
除中间产物的累积。氨化细菌,亚硝酸菌,硝酸菌及反硝化菌之间就表现为互生关系。在
氮素转化过程中,氨化细菌分解有机氮化合物产生氨,为亚硝酸菌创造了必需的生活条
件,但对氨化细菌则无害也无利。亚硝酸菌氧化氨,生成亚硝酸,又为硝酸菌创造了必要
的生活条件。Chai Sung Gee 等[34 ]研究了亚硝化单胞菌属与硝化杆菌在反应器内的相互
作用,运用悬浮生长实验获得的稳态氨和亚硝酸氧化的数据确定了这两种细菌数量的生
长参数,得出结论:硝化杆菌的活性依赖于硝化杆菌对亚硝化单胞菌的数量比例,而亚硝
化单胞菌的活性则不受两者之间数量比例的影响。可以断定这两个种群之间必然存在着
酶促共栖或生物化学的能量转移。反硝化菌则在厌氧条件下将NO-
3 、NO -
2 还原为N2 气
体,从污水的液相中排出,为亚硝化菌和硝化菌解除抑制因子,同时反硝化过程还提高了
反应器内的碱度,部分地补充了硝化过程所消耗的碱度,有利于反应器内pH 值稳定在硝
化菌活性较大的范围内。
❸ 工业中制取胱氨酸时用哪种离子树脂交换树脂去除盐酸中的铁盐
用猪毛制取胱氨酸的操作工艺
首先将8000Kg洗净猪毛、蛋白酶和16000Kg30%的工业盐酸放在衬四氟反应釜中,温度逐渐升至120℃,搅拌,水解10h,然后加入250Kg活性炭进行脱色,趁热过滤,滤液用30%的氢氧化钠溶液中和至pH为4.8,静置结晶,及得粗制胱氨酸产品。
将粗制胱氨酸产品加入到1.5mol∕L的工业盐酸中溶解,加热至85℃,加入产品量10%的活性炭,脱色,趁热过滤,滤液加热至80-90℃,用氨水中和至Ph为4.8,静置,结晶,过滤。把结晶用1mol∕L的盐酸溶解,加热至80-90℃,加入结晶量的5%的活性炭脱色,趁热过滤。滤液用2%的EDTA进行脱铁,搅拌半小时,过滤,滤液再用2号砂芯漏斗过滤。然后滤液用蒸馏水稀释2-3倍,加热至80℃,用氨水中和至pH为4.0-4.1,冷却静置,结晶,过滤,用去离子水洗涤结晶至无氯离子。在60-70℃时烘干,粉碎过筛及得成品胱氨酸。
❹ 能给偶关于污水处理厂中氯气消毒的原理的信息吗
1、二氧化氯对细菌、病毒及真菌孢子的杀灭能力均很强,由于ClO2是一种不稳定化合物,不含H0Cl和H0Cl-形式的有效氯,然而其浓度常以有效氯的术语表示。ClO2氯原子为正4价,还原成氯化物时将可得到5个电子,因此其氧化力相当于氯的5倍,有效氯含量为263%。故二氧化氯是极为有效的饮水消毒剂。二氧化氯对微生物的杀灭原理是:二氧化氯对细胞壁有较好的吸附性和透过性能,可有效地氧化细胞内含疏基的酶;可与半胱氨酸、色氨酸和游离脂肪酸反应,快速控制生物蛋白质的合成,使膜的渗透性增高;并能改变病毒衣壳蛋白,导致病毒灭活。
2、 氯的杀菌作用是由于次氯酸体积小,电荷中性,易于穿过细胞壁;同时,它又是一种强氧化剂,能损害细胞膜,使蛋白质、RNA和DNA等物质释出,并影响多种酶系统(主要是磷酸葡萄糖去氢酶的巯基被氧化破坏),从而使细菌死亡。氯对病毒的作用,在于对核酸的致死性损害。有资料指出病毒对氯的抵抗力较细菌强,其原因可能是病毒缺乏一系列的代谢酶;氯较易破坏—SH键,而较难使蛋白质变性。
❺ 同型半胱氨酸和半胱氨酸有什么区别
半胱氨酸,或称为高同型半胱氨酸或同半胱氨酸简称-血同,是氨基酸半胱氨酸的异种,在旁链部份硫醇基(-SH)前包含一个额外的亚甲基(-CH2-)。
同型半胱氨酸(homocysteine,Hcy)是一种含硫氨基酸,为蛋氨酸代谢过程中重要中间产物。目前为高Hcy血症是体内叶酸和维生素B12缺乏的敏感指标,是心血管疾病的独立危险因素。动脉粥样硬化者中,高Hcy血症患病率为13-47%。在心血管疾病高发的今天,评价血Hcy继而进行针对性的处理具有非常重要的临床意义。
高半胱氨酸浓度越低,你的身体就越能保持完美的生化平衡,从而使自己更完美。这就意味着更多的精力、更好的耐力及忍受力,更清醒的头脑、更少的感染和更好的皮肤及体重控制。因此,如果不保持高半胱氨酸浓度较低或在平衡范围之内。因此,高半胱氨酸是人的重要健康指标。
半胱氨酸是一种生物体内常见的氨基酸,可由体内的蛋氨酸(甲硫氨酸,人体必需氨基酸)转化而来,可与胱氨酸互相转化。
(5)胱氨酸废水处理扩展阅读:
半胱氨酸(cysteine;Cys)的化学名称为2-氨基-3-巯基丙酸,它是脂肪族含巯基的极性α-氨基酸。半胱氨酸是人体的条件必需氨基酸和生糖氨基酸,可由体内的蛋氨酸(甲硫氨酸,人体必需氨基酸)转化而来,可与胱氨酸互相转化。
同型半胱氨酸的额外亚甲基使硫醇基更接近羧基,令它能起动化学反应形成一个五元环,称为高半胱氨酸硫内酯。当氨基酸正常地与它的毗邻形成一个肽键就会产生这种反应。高半胱氨酸之所以是不适合与蛋白质混合,这是因含有高半胱氨酸的蛋白质会自行分解。
❻ 半胱氨酸会破坏胰岛素吗胱氨酸也会吗
目的探讨同型半胱氨酸(Hcy)与胰岛素抵抗的相关性,分析2型糖尿病高同型半胱氨酸血症(HHcy)的影响因素。方法选择健康体检者30例作为健康对照组,选择2型糖尿病患者130例分为正常体重组、超重组和肥胖组。留取血尿测定Hcy及生化指标,计算体重指数(BMI)、稳态模型胰岛素抵抗指数(HOMA-IR)。结果各组血浆Hcy水平依次升高。各组间HOM-AIR、BMI、空腹血糖(FPG)、FINS、总胆固醇(HbA1c)、总胆固醇(TC)、三酰甘油(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、尿Alb/Cr、尿素氮(BUN)、收缩压(SBP)、年龄、病程差异有统计学意义(P0.05或0.01)。性别、肌酐(Cr)、舒张压(DBP)差异无统计学意义(P0.05)。相关分析表明Hcy与HOMAIR、BMI、FPG、HbA1c、TC、TG、HDL-C、LDL-C、尿Alb/Cr、Cr、SBP、DBP、病程呈显著正相关(P0.05);与性别、年龄、BUN、FINS无相关性(P0.05)。进一步多元逐步回归分析显示仅HOMAIR、BMI、SBP、TC、尿Alb/Cr、Cr、FPG与血浆Hcy水平独立相关。结论随着胰岛素抵抗的加重,血浆Hcy水平逐渐升高。2型糖尿病血浆Hcy水平升高与胰岛素抵抗有关。2型糖尿病HOMAIR、BMI、SBP、TC、尿Alb/Cr、Cr、FPG是影响血浆Hcy水平的独立相关因素。
❼ 苏氨酸废液怎样处理,急
苏氨酸是一种重要来的营养强化剂,源可以强化谷物、糕点、乳制品,和色氨酸一样有恢复人体疲劳,促进生长发育的效果。医药上,由于苏氨酸的结构中含有羟基,对人体皮肤具有持水作用,与寡糖链结合,对保护细胞膜起重要作用,在体内能促进磷脂合成和脂肪酸氧化。其制剂具有促进人体发育抗脂肪肝药用效能,是复合氨基酸输液中的一个成分。同时,苏氨酸又是制造一类高效低过敏的抗生素——单酰胺菌素的原料。
随着人民生活水平的提高和养殖业的发展,苏氨酸作为饲料用氨基酸,广泛用于添加仔猪饲料、种猪饲料、肉鸡饲料、对虾饲料和鳗鱼饲料等。具有下列特点:
——可调整饲料中氨基酸平衡,促进生长;
——可改善肉质;
——可改善氨基酸消化率低的饲料原料的营养价值;
——可生产低蛋白的饲料,有助于节约蛋白质资源;
——可降低饲料原料成本;
——可降低畜禽粪便和尿液中的含氮量,畜禽舍中氨气浓度及释放速度。
❽ 急求高手解决!!!胱氨酸试剂纯度测定实验方案设计(2个实验方法不同的方案)
.实验原理:
在溴酸钾的标准溶液中,加入过量的溴化钾,将溶液酸化,发生反应生成溴。在有过量溴存在的强酸性溶液中(盐酸浓度1mol/L),胱氨酸和溴1:5发生反应,剩余的溴用碘化钾还原,析出的碘可用硫代硫酸钠标准溶液滴定。
二.实验内容和实验步骤:
1.硫代硫酸钠标准溶液的配制:称取约3.1-3.2g的带5个结晶水的硫代硫酸钠,用新鲜蒸馏水溶解,加入少量碳酸钠,稀释到约500ml,贮在棕色瓶子里。
2.准确称取0.1740-0.1744g溴酸钾基准物质和2g溴化钾,溶解后定量转入250ml容量瓶,移取25.00ml该溶液,加25ml水,10ml(1+1)盐酸,放5-8分钟,然后加入20ml10%的碘化钾,再放5-8分钟,用硫代硫酸钠滴定到淡黄色,加2ml淀粉溶液,继续滴定到蓝色消失,记下消耗硫代硫酸钠的体积。
3.溴酸钾标准溶液的配制:准确称取1.3360g干燥的溴酸钾,溶解并转移到100ml容量瓶中,移取25.00ml进入100ml容量瓶再稀释到刻度。
4.从稀释后的溴酸钾标准溶液中移25.00ml到锥形瓶中,加过量溴化钾固体和25ml 2mol/L的盐酸。放在冰浴中并盖上表面皿,放30分钟。
5.准确称取0.21-0.22gL-胱氨酸试剂,用稀盐酸溶解后装入100ml容量瓶中,移取25.00ml加入步骤4中的溶液里,适当摇动反应5-10分钟。
6.加入22-25ml 2mol/L的氢氧化钠溶液,再加入0.2mol/ L的碘化钾溶液20ml,立即用硫代硫酸钠滴定到淡黄色,加入淀粉指示剂,继续滴定到蓝色刚好消失,记下消耗的硫代硫酸钠体积。
三.L-胱氨酸试剂纯度的计算过程:
标定硫代硫酸钠标准溶液的浓度为C,滴定时消耗体积V,L-胱氨酸试剂质量为m,则L-胱氨酸试剂的纯度=(0.0012-2VC/5)*240.3/m*100%。
❾ 污水处理中的厌氧和好氧是什么意思
污水处理中的厌氧和好氧的意思是:厌氧就是不喜欢氧气,微生物的工回作环境不能有氧答气,相反,好氧菌的工作环境则必须含有氧气。
在污水处理过程中,废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵,是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CO2。
在实际生产应用中,由于两种方法都有一定的缺点和优势,一般是将两种方法组合在一起的方法来进行生产和应用。目前,最先进的处理模式是,通过改变微生物的种群,人工添加一些产生絮凝作用的微生物菌群,不管是在厌氧阶段还是在好氧阶段,通过适时添加相应的微生物絮凝剂(如红平红球菌等),不仅加快了各个过程的反应时间,最重要的是减少了沉降时间,同时减少了絮凝剂法国爱森聚丙烯酰胺的用量,降低了药剂成本;还有一个趋势是,在污水处理的最后阶段,添加一些高分子的生物絮凝剂,比如聚谷氨酸,聚胱氨酸等可以生物降解的絮凝剂,避免了污泥的二次污染,同时节省了污泥处理成本。
❿ 肾胱氨酸结石的治疗是什么
治疗的目的是使尿中胱氨酸的浓度低于200mg/L。对胱氨酸结石的治疗可以采取下列措施。
(1)减少含胱氨酸食物的摄入:胱氨酸是由必需氨基酸甲硫氨酸代谢而来的,应限制富含甲硫氨酸的食物(如肉、家禽、鱼、奶制品),以减少胱氨酸的排泄。由于胱氨酸是一种必需氨基酸,对生长期的儿童不宜过于限制,以免对大脑以及生长造成一定的影响。
严格限制钠的摄入也有利于降低胱氨酸的尿中浓度。
(2)增加液体的摄入:1升尿大约能溶解250mg胱氨酸,应均匀地饮水以达到整天均匀地排尿(尤其夜间要有足够量的尿),并使24小时尿达到3升。
(3)口服碱性的药物:碱化尿液至尿pH>8.4,是一个非常重要的措施。同时增加液体摄入,可以增加胱氨酸在尿中的溶解度,不仅能预防新的结石形成,而且能使已经形成的结石溶解。碳酸氢钠和枸橼酸钾最常用于碱化尿液。乙酰唑胺能通过抑制碳酸酐酶而增加碳酸氢盐的排泄。
(4)口服降低胱氨酸排泄的药物:如青霉胺(每增加青霉胺剂量250mg/d,可降低尿胱氨酸浓度75~100mg/d)、N-乙酰-D-L-青霉胺、乙酰半胱氨酸、?-巯丙酰甘氨酸等。这些药物能与胱氨酸中的巯基(-SH)结合而增加其溶解度。也可口服谷酰胺降低胱氨酸的浓度。?-巯丙酰甘氨酸(MPG)能与胱氨酸结合形成可溶性复合物,使尿胱氨酸浓度低于200mg/L。但它的毒性比青霉胺低。
卡托普利通过形成卡托普利-胱氨酸的二硫键复合物使溶解度增加200倍。应当指出的是,这些药物都有一定的副作用,服用时如出现副作用,应及时停药并作相应处理。
(5)大剂量维生素C:其作用是使胱氨酸转变为溶解度较大的半胱氨酸。副作用是会增加草酸的形成而出现高草酸尿。由于胱氨酸结石是一种遗传性疾病,必须坚持长期治疗。如上述措施无效而结石引起肾功能损害,应及时进行手术治疗。必要时可在手术的同时放置肾造瘘管以供今后溶石治疗时用。可用于溶石的药物有碳酸氢钠、N-乙酰半胱氨酸、氨丁三醇、青霉胺(D-青霉胺)。对胱氨酸结石用超声碎石和体外冲击波碎石治疗的效果不佳。这是因为胱氨酸是有机物质,晶体间结合牢固,对超声和体外冲击波都不敏感的缘故。另一方面,胱氨酸结石一般体积比较大,常为多发结石和铸型结石,勉强碎石不仅费时,排石也费时。碎石不彻底或排石不完全都有可能在肾脏内遗留结石碎片,并成为复发结石的核心。
因此,对胱氨酸结石应采用多种方法综合治疗。