当前位置:首页 » 废水回用 » 纳米材料污水处理

纳米材料污水处理

发布时间: 2021-03-04 04:47:05

❶ 最有效的污水处理方法

使用纳米二氧化钛污水抄处理技术

子西莱纳米二氧化钛污水处理技术方法采用了子西莱公司自主研的高光催化纳米二氧化钛。光催化技术效果远远超过P25

1、
将污水中的污泥、大分子颗粒、重金属颗粒和絮状物进行过滤

2、
过滤后的污水排放到反应池中,然后投加分散好的纳米二氧化钛液或纳米二氧化钛膏体,进行光催化的反应,如果污水的浑浊度较大可进行前处理,反应过程中要有搅拌或曝气设备;

3、反应池的面积尽可能的大,水深尽可能浅,尽量采用功率较大的紫外灯。在反应过程
中可同时利用太阳光能进行降解。

❷ 为什么不用微纳米气泡技术净化饮用水

饮用水消毒
生活饮用水处理技术及其工艺在20 世纪初期就已形成雏形,并在饮用水处理的实践中回不断得以完善。答生活饮用水处理工艺的主要去除对象是水源水中的悬浮物、胶体物和病原微生物等。生活饮用水处理工艺所使用的处理技术有混凝、沉淀、澄清、过滤、消毒等,由这些技术所组成的生活饮用水处理工艺目前仍为世界上大多数水厂所采用。消毒作为饮用水处理的最后一步,可以向水中通入微纳米臭氧气泡来灭活水中的病原微生物。

❸ 纳米技术在生活中应用

1、治理有害气体
工业生产中使用的汽油、柴油以及作为汽车燃料的汽油、柴油等,由于含有硫的化合物在燃烧时会产生二氧化硫气体,这是二氧化硫最大的污染源,所以石油提炼中有一道脱硫工艺以降低其硫的含量。
纳米钛酸钻(CoTiO,)是一种非常好的室友脱硫催化剂,经它催化的石油中硫的含量小于0.01% ,达到国际标准。
2、污水处理方面
污水中通常含有有毒有害物质、悬浮物、泥沙、铁锈、异味污染物、细菌病毒等。污水治理就是将这些物质从水中去除。新的一种纳米技术可以将污水中的贵金属如金、钌、钯、铂等安全提炼出来,变害为宝。一种新型的纳米级净水剂具有很强的吸附能力。
它的吸附能力和絮凝能力是普通净水剂三氯化铝的10~20倍。
3、汽车领域的应用
汽车制造中应用的塑料数量将越来越多。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。由于纳米粒子尺寸小于可见光 的波长,纳米塑料可以显示出良好的透明度和较高的光泽度,这样的纳米塑料在汽车上将有广泛的用途。
经过纳米技术处理的部分材料耐磨性更是黄铜的27倍、钢 铁的7倍。除此之外,纳米塑料除了可回收外,还有长期耐紫外线、色泽稳定、质量较轻等优点,在汽车配件中的应用领域相当广泛。
在汽车外装件中,主要用于保险杠、散热 器、底盘、车身外板、车轮护罩、活动车顶及其它保护胶条、挡风胶条等。在内饰件中,主要用于仪表板和内饰板、安全气囊材料等。相关业内专家预测,在未来的 20年内,纳米塑料将大量取代现有的车用塑料制品,有相当大的市场潜力。

❹ 纳米材料在水处理领域中的应用有哪些难点

纳米技术这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 纳米动力学,主要是微机械和微电机

❺ 关于纳米技术材料的核心技术有几点

由于纳米TiO2除了具有纳米材料的特点外,还具有光催化性能,使得它在环境污染治理方面将扮演极其重要的角色。
1.降解空气中的有害有机物。随着室内装潢涂料油漆用量的增加,室内空气污染越来越受到人们的重视。调查表明,新装修的房间内空气中有机物浓度高于室外,甚至高于工业区。科学家已从空气中鉴定出几百种有机物质,其中有许多物质对人体有害,有些是致癌物。对室内主要的气体污染物甲醛、甲笨等的研究结果表明,光催化剂可以很好地降解这些物质,其中纳米TiO2的降解效率最好,将近达到100%。其降解机理是在光照条件下将这些有害物质转化为二氧化碳、水和有机酸。纳米TiO2的光催化剂也可用于石油、化工等产业的工业废气处理,改善厂区周围空气质量。
2.它可以降解有机磷农物。这种70年代发展起来的农药品种占我国农药产量的80%,它的生产和使用会造成大量有毒废水。这一环保难题,使用纳米TiO2来催化降解可以得到根本解决。
3.用纳米TiO2催化降解技术来处理毛纺染整废水,具有省资、高效、节能,最终能使有机物完全矿化、不存在二次污染等特点,显示出良好的应用前景。
4.在石油开采运输和使用过程中,有相当数量的石油类物质废弃在地面、江湖和海洋水面,用纳米TiO2可以降解石油,解决海洋的石油污染问题。
5.用纳米TiO2可以加速城市生活垃圾的降解,其速度是大颗粒TiO2的10倍以上,从而解决大量生活垃圾给城市环境带来的压力。
6.一般常用的杀菌剂Ag、Cu等能使细胞失去活性,但细菌被杀死后,可释放出致热和有毒的组分如内毒素。内毒素是致命物质,可引起伤寒、霍乱等疾病。利用纳米TiO2的光催化性能不仅能杀死环境中的细菌,而且能同时降解由细菌释放出的有毒复合物。在医院的病房、手术室及生活空间细菌密集场所安放纳米TiO2光催化剂还具有除臭作用。
7.纳米TiO2由于其表面具有超亲水性和超亲油性,因此其表面具有自清洁效应,即其表面具有防污、防雾、易洗、易干等特点。如将TiO2玻璃镀膜置于水蒸气中,玻璃表面会附着水雾,紫外线光照射后,表面水雾消失,玻璃重又变得透明。在汽车挡风玻璃、后视镜表面镀上TiO2薄膜,可防止镜面结雾。实验表明,镀有纳米TiO2薄膜的表面与未镀TiO2薄膜的表面相比,前者显示出高度的自清洁效应。一旦这些表面被油污等污染,因其表面具有超亲水性,污染不易在表面附着,附着的少量污物在外部风力、水淋冲力、自重等作用下,也会自动从TiO2表面剥离下来,阳光中的紫外线足以维持TiO2的薄膜表面的亲水特性,从而使其表面具有长期的自洁去污效应。这一特性的开发利用将改变人们对涂层功能的认识,从而给涂层材料带来-次新的革命。今后将广泛应用于汽车表面涂层、建筑物玻璃外墙等。由于纳米TiO2光催化剂具有良好的化学稳定性、抗磨损性能好、成本低、制备的薄膜透明等优点,已成为目前最引人注目的环境净化材料,更重要的是能直接利用太阳光、太阳能、普通光源来净化环境。
总之,随着纳米材料和纳米技术基础研究的深入和实用化进程的发展,特别是纳米技术与环境保护和环境治理进一步有机结合,许多环保难题诸如大气污染、污水处理、城市垃圾等将会得到解决。我们将充分享受纳米技术给人类带来的洁净环境。

❻ 纳米材料缔合清洁压裂液研究

黄 静

(中国石化石油工程技术研究院 储层改造研究所,北京 100101)

摘 要 无残渣的表面活性剂压裂液对支撑裂缝和地层的伤害小,是国内外压裂液研究的发展趋势和热点。目前国内研制和应用的黏弹性表面活性剂(VES)压裂液多集中在低-中温,与国外产品相比还有较大差距。本研究针对传统黏弹性表面活性剂压裂液耐温性差的缺点,通过新型纳米材料与VES胶束缔合,充分利用纳米材料奇异的表面形貌和高的表面反应性使黏稠的VES流体在高温下长时间保持稳定的流体黏度,大大提高了压裂液的液体效率。首次采用了绿色环保的SRND -1溶剂作为分散助剂成功对超细纳米粉体材料进行了预分散前处理,通过研究形成了耐温150℃的高分散纳米材料缔合清洁压裂液体系,其耐温耐剪切流变性能、静态滤失性能、不同温度的破胶性能等均优于常规清洁压裂液体系。

关键词 清洁压裂液 黏弹性表面活性剂 纳米材料 高温流变性

Study of Nanomaterial Applications in Non-damage

Fracturing Fluids

HUANG Jing

(Research Institute of Petroleum Engineering,SINOPEC,Beijing 100101 ,China)

Abstract Viscoelastic surfactant(VES)fracturing fluid imposes little damage on supporting fracture and formation,and it is now the development trend of hot topic of the study on fracturing fluid.At present, viscoelastic surfactant(VES)fracturing fluid that being developed and applied in China mainly concentrates in low and middle temperature.Aiming at the disadvantages of poor temperature resistance for the traditional VES fracturing fluid,through combining the new nanometer material with VES micelle,this research makes full use of the strange surface appearance of nanometer materials,as well as the high surface reactivity,to make the sticky VES fluid keep its stable fluid viscosity under the high temperature for a long time,so as to prevent the VES fluid from leaking off to the stratum,thus greatly enhancing the fracturing fluid efficiency.In this research,green SRND-1 solvent is used as dispersing additives for the first time,which has successfully concted pre- dispersion treatment on nano-powder materials,and formed the dispersion method for nanometer materials of clean fracturing fluid.The system for high dispersion nanomaterials associated with clean fracturing fluid that can resist high temperature of 150℃is formed in this research,which features temperature resistance,anti-shearing, rheological properties,static filtration property,gel breaking property under different temperature,and other properties,all of which are superior to regular VES fracturing fluid systems.

Key words clean fracturing fluid;VES;nanomaterial;rheological characteristic in high temperature

压裂作业是目前提高低渗透油气藏生产能力的主要措施之一。其中,水力压裂作为油气井增产、注水井增注的一项重要技术措施已经发展应用了60多年。在影响压裂成败的诸多因素中,压裂液的性能至关重要,是决定压裂施工成败和增产效果的关键。无残渣的清洁压裂液对支撑裂缝和地层伤害小,是国内外压裂液研究的发展趋势和热点。目前国内研制和应用的黏弹性表面活性剂(VES)清洁压裂液耐温性多集中在低-中温,适用温度在110℃以下,与国外产品相比还有较大差距。

纳米技术与信息技术、生物技术被列为当代三大技术。纳米材料自20世纪80年代开发问世以来引起世界各国的极大关注,其所具有的特殊效应使纳米微粒和纳米固体表现出与常规材料不同的特性,在生物医学、制药工程、空间技术和信息技术等领域得到了广泛的应用。在油气田开发方面,诸如驱油[1,2]、钻井液[3~5]、降压增注[6,7]、封堵剂[8,9]、稠油降黏[10~12]、油田管道防护[13,14]、油田污水处理[15]等表现出优异的性能,应用效果极其明显。

2007年美国贝克休斯石油公司研究人员首次报道了 “纳米技术在黏弹性表面活性剂增产液体中的应用”[16]。他们将纳米颗粒作为黏度调节剂加入VES溶液中,充分发挥了纳米材料奇异的表面形貌和高的表面反应性,使纳米材料通过化学吸附和表面电荷吸引与VES胶束缔合建立起一种强的动态网状结构,这种动态网状结构能够在高温下稳定VES胶束,同时可以阻止流体向多孔介质流失,即加入的纳米颗粒具有保持流体高温稳定性和明显降低流体滤失的功能。同时当VES胶束破胶时,流体的黏度会急剧下降,VES流体形成的假滤饼破碎成可以渗透并且失去黏性的纳米颗粒,由于颗粒足够小,可以通过地层的孔喉,最终随着返排液排出,不会对地层造成伤害。

纳米技术提高清洁压裂液耐温性的研究在国内还是个空白,截至目前还没有相关文献报道。

本研究利用纳米粒子与黏弹性表面活性剂的相互作用形成稳定的网络结构,达到提高压裂液耐高温性能的目的。目标是通过优选纳米材料,将纳米技术应用于清洁压裂液中,通过纳米材料缔合作用提高清洁压裂液的稳定性,从而增强其耐温性能以保持流体在高温下的高黏度和控制压裂液向地层滤失,以满足高温深井清洁压裂液施工的需要。

1 纳米缔合清洁压裂液的研制

1.1 清洁压裂液优选

本研究优选了国内油田常用的3种VES清洁压裂液,对其综合性能进行了评价,最终确定了一种体系作为拟提高耐温性能的基础体系。图1所示的是在80℃和100℃下所选择的VES清洁压裂液的黏度随剪切时间的变化曲线。

1.2 纳米材料的优选与制备

根据文献调研结果,确定了使用压裂液的纳米材料的选择方向,即选择与压裂液体系具有强烈相互作用的纳米材料,在压裂液体系中才具有良好的适应性和配伍性,最终才能形成稳定的纳米材料缔合压裂液体系,所以必须根据压裂液的结构特征来选择能与其具有强烈相互作用的纳米材料。遵循这样的原则最终选取了硅、钛、镁、铝、锌这五大类的纳米材料进行下一步的研究。采用液相化学法制备了纳米氢氧化铝(Al(OH)3)、纳米γ型氧化铝(γ-Al2O3 )、纳米二氧化硅(SiO2 )、纳米二氧化钛(TiO2 )、纳米氧化锌(ZnO)、改性纳米草酸镁(MgC2O4 )、纳米碳酸钙(MgCO3 )、纳米氧化镁(MgO)和纳米碱式碳酸锌粉体(ZnCO3·2Zn(OH)2·H2O)等9种纳米材料。

1.3 纳米材料的表征

利用X射线衍射分析材料中物相结构及元素的存在状态,进行晶粒粒度测定;采用化学吸附仪对纳米材料的比表面积进行测定,实验结果列于表1中。实验表明,所制备的纳米材料具备粒径较小、比表面积较大的特点。

图1 VES-2清洁压裂液黏度随剪切时间的变化(80℃和100℃)

表1 纳米材料的粒径和BET比表面积

1.4 纳米材料在清洁压裂液中的预分散处理研究

为了有效地解决纳米材料自团聚和与基体亲和力差的问题,从而提高其在压裂液中的稳定分散性,我们对其进行了在压裂液中的预分散性研究。在本研究中创新性地采用SRND-1溶剂作为分散助剂,实验结果显示制备的纳米材料在SRND-1溶剂中均能均匀分散,这表明SRND-1溶剂为纳米材料预分散较好的分散助剂。通过对超细纳米粉体材料进行预分散,可以缓解超细纳米粉体材料易团聚的问题,能够充分发挥纳米材料在基质中的纳米效应。另外,超细纳米粉体材料在使用过程中可能会导致粉尘问题,引起粉尘爆炸,影响操作人员的身体健康,降落在设备上的粉尘还会影响操作,造成电器设备失灵,引起事故,这给超细纳米粉体材料的处理和运输带来了困难,从而限制了其现场应用。对超细纳米粉体材料进行预分散,可以解决上述粉尘问题,解决了超细纳米材料在现场应用不方便的技术难题。

2 纳米材料缔合清洁压裂液综合性能评价

2.1 纳米材料缔合清洁压裂液的基液黏度测试

用自来水制备500ml清洁压裂液体系,在室温下测得其基液黏度为56mPa·s。

2.2 纳米材料缔合清洁压裂液高温下的流变性能评价

图2显示未使用纳米材料的清洁压裂液在130℃和170s-1剪切速率下的黏度。在未添加纳米材料的情况下,清洁压裂液的黏度在60min内降到25mPa·s以下。

图2 未添加纳米材料时的黏度剪切曲线(130℃,170s-1,2h)

图3显示的是使用SiO2纳米材料的清洁压裂液在130℃和170s-1剪切速率下的黏度,图4显示的是使用TiO2纳米材料的清洁压裂液在130℃和170s-1剪切速率下的黏度,可以看出流体能够在130℃时保持50~60mPa·s的黏度。图示结果表明纳米材料缔合的清洁压裂液能稳定流体在高温时的黏度。

图3 添加SiO2纳米材料时的黏度剪切曲线(130℃,170s-1,2h)

图4 添加TiO2纳米材料时的黏度剪切曲线(130℃,170s-1,2h)

图5显示的是使用SiO2纳米材料的清洁压裂液在150℃和170s-1剪切速率下的黏度,可以看出纳米缔合清洁压裂液体系能够在150℃保持50~60mPa ·s的黏度,显示出良好的耐高温耐剪切性能。

2.3 纳米材料缔合清洁压裂液静态滤失性能

压裂液配方:清洁压裂液基液+纳米材料+交联剂,测试温度为40℃,实验压差为3.5MPa。测试步骤按SY/T 5107—2005 “水基压裂液性能评价方法” 执行。

实验结果如表2所示。

图5 添加SiO2纳米材料时的黏度剪切曲线(150℃,170s-1,2h)

表2 纳米材料缔合清洁压裂液的静态滤失性能

2.4 纳米材料缔合清洁压裂液的破胶性能

测试目的:评价新型压裂液体系的破胶性能。

实验配方:纳米材料缔合清洁压裂液+不同浓度的过硫酸铵破胶剂。

实验条件:制备压裂液放入90℃恒温水浴中。

实验结果见表3。

实验结果表明:该压裂液体系在加入胶囊破胶剂和常规过硫酸铵破胶剂的情况下,均能快速彻底破胶,破胶液黏度小于5 mPa ·s,有利于压裂后的返排。

表3 不同破胶剂浓度下的破胶性能

3 结论与建议

3.1 结论

1)通过综合对比评价3套油田常用的成熟VES清洁压裂液的综合性能,优选出一套配方体系作为拟提高耐温性能的基准清洁压裂液。

2)合成制备了5大类9种纳米材料,对其进行了性能表征,分别测定了粒径和比表面积。所采用的液相化学方法操作简单,反应条件温和,产率高,可重复性强,部分制备纳米材料的方法可推广应用。

3)采用绿色环保的SRND-1溶剂作为分散助剂对超细纳米粉体材料进行了预分散前处理,解决了超细纳米粒子自身易团聚的问题,从而充分发挥其纳米效应,解决了纳米材料在压裂液中分散难的应用难题。

4)本研究通过优化实验条件,建立了纳米材料在清洁压裂液中的分散方法。该方法简单,现场操作性强,配制出高分散纳米材料缔合清洁压裂液体系。

5)形成了耐温150℃的高分散性纳米材料缔合清洁压裂液配方体系,其综合性能优于常规清洁压裂液体系。

3.2 建议

本研究在纳米材料增强清洁压裂液的耐温性方面开展了初步的探讨性工作,还需要在以下方面进行深入研究:

1)纳米材料的中试技术研究;

2)纳米材料与清洁压裂液作用机理研究;

3)纳米缔合清洁压裂液的综合性能评价研究;

4)纳米缔合清洁压裂液对储层岩心的伤害性评价研究;

5)纳米缔合清洁压裂液体系的现场应用技术研究。

参考文献

[1]朱红.纳米材料化学及其应用[M].北京:清华大学出版社,2009.

[2]姚文红,俞力.江苏油田纳米溶液驱油实验研究[J].石油化工应用,2011,30(1):8~12.

[3]赵雄虎,高飞,鄢捷年,等.纳米钻井液材料GY -2室内研究[J].油田化学,2010,27(4):357~359.

[4]崔迎春,李家芬,苏长明.纳米技术在石油工业上游领域应用初探[J].钻井液与完井液,2003,20(6):11~12.

[5]白小东,蒲晓林.有机/无机复合纳米水基钻井液体系研究[J].石油钻探技术,2010,38(2):47~50.

[6]易华,苏连江.聚硅纳米材料在油田降压增注的应用试验研究[J].大庆师范学院学报,2009,29(6):114~116.

[7]王长杰,李攀,张影.聚硅纳米增注技术在临盘油田的试验应用[J].内蒙古石油化工,2008,2:80~81.

[8]王鸣川,朱维耀,王国锋,等.纳米聚合物微球在中渗高含水油田的模拟研究[J].西南石油大学学报(自然科学版),2010,32(5):105 ~108.

[9]陈渊,陈旭,刘卫军.纳米堵剂在河南油田高压注水井简化管柱上的研究与应用[J].特种油气藏,2008,15(1):92~94.

[10]王霞,陈玉祥,刘多容.一种抗高温高盐型纳米乳化降粘剂[P].专利申请号2007100504770,2008.

[11]李胜彪.稠油热采纳米乳化降黏技术研究与应用[J].石油天然气学报(江汉石油学院学报),2009,31(2):130~133.

[12]宫军,徐文波,陶洪辉.纳米液驱油技术研究现状[J].天然气工业,2006,26(5):105~107.

[13]刘晶姝,李强.钛纳米聚合物涂层在胜利油田的应用[J].防腐科学与防护技术,2006,18(3):225~227.

[14]董仲林.纳米双疏涂料用于管杆表面喷涂[J].油气田地面工程,2004,23(7):55.

[15]涂郑禹,邓林,李栋,等.非化学计量掺杂Ce纳米SiO2复合粒子聚砜复合膜处理油田含油污水技术研究[J].中国海上油气,2010,22(3):207 ~210.

[16]Huang T,Crews J B.2007.Nanotechnology applications in viscoelastic surfactant stimulation fluids[C].In:European Formation Damage Conference.Society of Petroleum Engineers,Scheveningen,The Netherlands

❼ 纳米技术在生活中的应用

纳米技术在治理有害气体方面、污水处理方面.汽车等领域都有着很重要的应用

1、治理有害气体

工业生产中使用的汽油、柴油以及作为汽车燃料的汽油、柴油等,由于含有硫的化合物在燃烧时会产生二氧化硫气体,这是二氧化硫最大的污染源,所以石油提炼中有一道脱硫工艺以降低其硫的含量。

纳米钛酸钻(CoTiO,)是一种非常好的室友脱硫催化剂,经它催化的石油中硫的含量小于0.01% ,达到国际标准。

2、污水处理方面

污水中通常含有有毒有害物质、悬浮物、泥沙、铁锈、异味污染物、细菌病毒等。污水治理就是将这些物质从水中去除。新的一种纳米技术可以将污水中的贵金属如金、钌、钯、铂等安全提炼出来,变害为宝。一种新型的纳米级净水剂具有很强的吸附能力。

它的吸附能力和絮凝能力是普通净水剂三氯化铝的10~20倍。

3、汽车领域的应用

汽车制造中应用的塑料数量将越来越多。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。由于纳米粒子尺寸小于可见光 的波长,纳米塑料可以显示出良好的透明度和较高的光泽度,这样的纳米塑料在汽车上将有广泛的用途。

经过纳米技术处理的部分材料耐磨性更是黄铜的27倍、钢 铁的7倍。除此之外,纳米塑料除了可回收外,还有长期耐紫外线、色泽稳定、质量较轻等优点,在汽车配件中的应用领域相当广泛。

在汽车外装件中,主要用于保险杠、散热 器、底盘、车身外板、车轮护罩、活动车顶及其它保护胶条、挡风胶条等。在内饰件中,主要用于仪表板和内饰板、安全气囊材料等。相关业内专家预测,在未来的 20年内,纳米塑料将大量取代现有的车用塑料制品,有相当大的市场潜力。

(7)纳米材料污水处理扩展阅读:

多年来,中国纳米材料和纳米结构研究取得了引人注目的成就。目前,我国在纳米材料学领域取得的成就高过世界上任何一个国家,充分证明了我国在纳米技术领域占有举足轻重的地位。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,

如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。

对于固体粉末或纤维,当其有一维尺寸小于100nm,即达到纳米尺寸,即可称为所谓纳米材料,对于理想球状颗粒,当比表面积大于60㎡/g时,其直径将小于100nm,达到纳米尺寸。

❽ 珠海纳米德水处理科技有限公司是骗子公司吗

纳米德水来处理科技(香港)有限源公司为因应中国广大市场的需求,直接于广东省珠海市注资设立中国*子公司-珠海纳米德水处理科技有限公司,是集水处理技术科研开发、水处理设备生产经营、水处理方案策划施工的专业水处理技术产(实)业公司,具有独立的外资独资企业法人资格,境外业务由香港负责,境内业务由珠海负责,公司管理以水处理技术本位为主,是集研发、生产、销售“纳米德”净水供水处理设备的专业厂家,拥有符合国家标准GNP的专业生产线,生产整套符合国家水质检测标准的大型水处理设备、超纯水处理设备、工业水处理设备、废水污水处理设备、中水回用处理设备、集团净水供水处理设备、中央分质净水供水处理设备、点式分质净水供水处理设备。||纳米德水处理科技有限公司/三一目标:质量*、信誉*、服务*。|专业水处理技术本位,具备完全满足不同客户、不同用途、不同需求的技术及服务能力,纳米德净水供水处理设备荣获国家专利、中国预防医学科学院检验合格报告、中国卫生部卫生安全产品许可证,并通过ISO 9001国际质量体系认证。

❾ 有关纳米铁污水处理的文献(英文)

这个需要帐号。没有 帐号上不了数据库,知道关键词也白搭。
我毕业以后离开内学校也有一段时间没法查文容献,后来我找到个网站,上面更新一些能用的免费国内外图书馆的帐号,我也在我的网络博客里更新。可以去找找试试。
http://hi..com/pxpsd/blog/item/f11407de357a455295ee3726.html

❿ 水厂采用美国desal纳米水处理系统是什么意思

desal是品牌名称,纳米是度量单位,现在的过滤精度都是纳米级的。意思就是使用desal生产的纳米级水处理系统


热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239