污水泥浆泵安装技术要求
⑴ 污水泥浆泵的介绍
污水泥浆泵钻探过程中﹐向钻孔里输送泥浆或水等冲洗液的机械。泥浆泵是钻探设备的重要组成部分。
⑵ 污水泥浆泵如何选型
一复般根据实际需要的制扬程、流量、输送距离多远,来选择污水泥浆泵的型号。参考如下:
先把污水(泥浆)的物理特征及数据逐步提出、如液体中固体的大小、浓度、输送高度及距离等。进行流体力学计算得出流量,扬程、电机(轴功率),根据工况条件选择哪种形式的泵、根据计算的数据依照泵样本上的参数或性能曲线对照定出何种规格的泵。
挑选时要注意以下几点:
泥浆的颗粒大小和粘稠度要与污水泥浆泵相匹配,否则易烧机;
加装入口底阀,不然易在停机时倒流;
污水泥浆泵的电机要选用4P马达,转速不易过快。
⑶ 污水混凝土检查井的技术要求
塑料检查井施工
A、井坑与基础
1、井坑应与管沟同时开挖,开挖时井座主管线应与管沟中管道在同一轴线。井坑边坡与管沟边坡一致。井坑开挖时,不得扰动基土超挖;如基土受到扰动,则应按现行的《给排水管道工程施工及验收规范》GB 50268的有关规定,根据基土土质采取补救措施。有沉泥室雨水检查井井坑,应根据选用的规格,局部开挖沉泥室深度。井坑开挖应根据选用的规格,考虑井座主管线偏置因素,偏置端得坑壁应与管沟齐平。
2、地下水位较高的地区或雨季施工,应有排水,降低水位措施。
3、检查井基础应根据当地地质勘察资料和回填土下拽力经计算确定。当无资料时,可按检查井基础图施工。
B、检查井接管安装
1、检查井井座与管道连接安装顺序,应先从接户管上游段开始安装,以井-管-井-管顺序安装,病逐渐向下游支管,干管延伸。
2、井座接头与管道连接施工方法,应与同类型接头的管道连接的施工方法一致。
3、井座与汇入管,排出管连接需要变径,采用异径接头时,当汇入管径小于井座接口管径时,应管顶平接;井座排出管接口大于下游管道时,应管内底平接。
4、管道采用可变角接头或球形接头调整坡度时,当其管径为315mm,应采用专用工具,不得使用链条扳手。
5、附加接头的安装,应根据井筒尺寸和连接管道的直径,采用专用工具在井壁上开孔,孔洞圆周边缘应平整,安装附加接头不得倒坡。
6、在地下水位较高或雨季施工期间,在管道(含检查井)安装完成(但尚未进行灌水试验)时,应采取防止井体上浮的技术措施。
C、井筒安装
1、井筒的长度应为井座连接井筒的承口底部至设计地面的高度,再减去井筒顶至地面的净距。当地面或路面标高难以精确确定时,井筒长度可适当预留余量。
2、井筒插入井座应保持垂直。井筒插接时,不得使用重锤敲打,应采用专用收紧工具。
D、回填
1、回填应在排水管线(含管道和检查井)验收合格后进行,并与管道沟槽的回填同时进行。
2、回填前可用砂土袋、钢钎、木支撑将井座、井筒固定,并应排除基坑、沟槽内积水。
3、回填材料:从管底基础面至管顶以上0.5m范围内的沟槽回填材料可用碎石屑、粒径小于40mm的砂硕、高(中)钙粉煤灰,中粗砂或沟槽开挖出的良质土。
4、回填土不得采用淤泥,垃圾和冻土等,并不得夹带石块,砖及其他带有棱角的硬块物体。
5、在当地最大冻土深度大于等于1.0m时,在冰冻层范围内,应在井筒周围不少于100m范围内回填中粗砂。
6、回填应采用人工分层对称回填,其密实度与管道回填一致,并不得使井筒产生位移和倾斜,严禁机械回填。
E、井盖安装
1、井盖安装前应精确测量井筒的长度,切割井筒的多余部分。
2、安装井盖应按检查井的输送介质性质确定,污水井盖和雨水井盖等不得混淆。
3、有防护盖座的污水检查井的井筒上口还应安装内盖。
4、本图集中的防护盖座基础,系采用C20细石混凝土现场浇捣;如需采用钢筋混凝土预制,需经结构专业另行设计。
F、闭水试验
应按现行的埋地塑料排水管道工程技术规程进行闭水试验。
⑷ 污水泥浆泵的基本介绍
泥浆泵分单作用及双作用两种型式﹐单作用式在活塞往复运动的一个循环中仅完成一次吸排水动作。而双作用式每往复一次完成两次吸排水动作。若按泵的缸数分类﹐有单缸﹑双缸及三缸3种型式。
污水泥浆泵性能污水泥浆泵性能的两个主要参数为排量和压力。排量以每分钟排出若干升计算﹐它与钻孔直径及所要求的冲洗液自孔底上返速度有关﹐即孔径越大﹐所需排量越大。要求冲洗液的上返速度能够把钻头切削下来的岩屑﹑岩粉及时冲离孔底﹐并可靠地携带到地表。地质岩心钻探时﹐一般上返速度在0.4~1.0米/分左右。泵的压力大小取决于钻孔的深浅﹐冲洗液所经过的通道的阻力以及所输送冲洗液的性质等。钻孔越深﹐管路阻力越大﹐需要的压力越高。随著钻孔直径﹑深度的变化﹐要求泵的排量也能随时加以调节。在泵的机构中设有变速箱或以液压马达调节其速度﹐以达到改变排量的目的。为了准确掌握泵的压力和排量的变化﹐泥浆泵上要安装流量计和压力表﹐随时使钻探人员了解泵的运转情况﹐同时通过压力变化判别孔内状况是否正常以预防发生孔内事故。 叶轮出口宽度b2
叶轮宽度是对泥浆泵最主要的参数之一。是泥浆泵效率,通过性,抗磨性,汽蚀性综合考虑的结果,反循环钻机钻进时,其泥浆中掺杂大量页岩或泥沙,有时还会有大的石块,从效率考虑,泥浆泵较大叶片排挤和尺寸效应必然要求较大的叶片宽度才能保证良好的过流通道面积,以达到高效.从抗磨性考虑,较大的宽度有利于减小流速,减小叶轮外径,从而减小磨损,从通过性考虑,叶片宽度越大,通过性越好,为保证大颗粒的通过性,至少应大于要求通过最大颗粒的尺寸.从汽蚀性考虑,泥浆泵进口较大叶片排挤恶化了汽蚀性能.从输送性考虑,进口尺寸过大导致颗粒沉降,因此叶片宽度也应当限制而不宜过大.综合考虑,叶片出口宽度:
式中,kb2=(1.6~2.0)(n/100)5/6
叶轮进口直径D0
叶轮进口直径按进口处相对速度最小,因而水力损失最小的原则来确定。
式中, k0 为系数,一般取4.0; 若要考虑泵效率则取K1 = 4. 1~4. 5 。
Q为流量, m3/h;
n为转速,r/min.
叶轮出口直径D1
叶轮出口直径D1 的大小不但直接影响到泵的扬程,而且对泵的效率也会有很大的影响,因为压水室的水力损失直接与叶轮出口的绝对速度有关。为了减小压水室的水力损失,D2 应在满足设计参数的条件下使叶轮出口绝对速度最小,并以此来确定叶轮的出口直径。
D1 =
式中K2 ———系数,与泵的比转数 ns ,叶片数N ,叶片出口安放角β2 有关。在本次设计中, ns = 97,由此,取K2 = 3. 9 。根据有关资料得出b2 与D1 的关系为 。此关系式可作参考。根据经验,当 = 218~312 时,效率最佳,但同时也会造成一个不可忽视的问题,泵的结构也许会因此而过于庞大,修理困难,因此一般不采用。在设计过程中,经常取 = 2125~218 ,这时泵的效率和汽蚀性能都比较优良。
叶片进出口安放角β1,β2
叶片出口安放角β2要取稍大一些,较大的β2可以减小摩擦损失,泥浆中页岩浓度高,β2按250~300之间选取。
叶片进口安放角β1可通过计算求得:
式中,β1`为液流角;
Vm1为叶轮入口轴面速度,m/s;
U1 为叶轮入口圆周速度,m/s
3.4叶轮直径D2
式中,KD2=(9.0~9.6)(ns/100)-1/2
当保证一定的效率而重点考虑抗磨性要求时取小值。当保证一定抗磨性要求而侧重效率时取大值。
叶片线形,叶片数,叶片包角的 选取
以往叶片线形均为单圆弧或双圆弧,这种线形叶片容易手工焊接制作,由于材料原因,其使用寿命短,抗磨性差,目前国际上有关性能优良的泥浆泵的流线线形,主要采用渐开线及对数螺旋线。根据钻机泥浆泵使用情况,泥浆泵叶片数,叶片包角值不能过大,也不能过小。在通常情况下,叶片数一般取3~5 片,但从以往的实际经验来看,设计良好的3 叶片叶轮,其效率不低于5 叶片叶轮。因此为了改变杂质泵的通过性能,应尽量选取。
叶片数N为3 片,叶片出口安放角β2 = 22°,叶片包角为110o~130o.这是目前反循环钻机常选用的参数。
泵叶轮制造工艺及材料防护
叶轮作为泥浆泵的最主要过流部件,制造工艺十分重要。但渐开线线形的叶片不容易整铸,一是叶片形线不易保证,二是叶片表面质量不易保证。所以采用组铸结构。
泵壳采用整铸结构,形线和铸造质量都能有保证,为了能降低购买成本,大多数厂家和钻主都选用自制的泵壳,这也未尝不可。但要很好的保证结构工艺性能。
泥浆泵连续工作的实际输出功率的确定
可按公式 q= Q×λ×μ 确定
式中: q为泵的连续工作的实际输出功率,kW;
Q为柴油机的额定功率,kW;
λ为持续功率系数,取0. 9;