腈纶废水来源
『壹』 SBR好氧颗粒污泥对腈纶废水的处理情况如何
腈纶废水的COD去除数据(SBR/UASB)
天数/d 好氧进水COD 好氧出水COD COD去除率/% 厌氧进水COD 厌氧出水COD COD去除率/%
1
2 372 360 3.225806 698 687 1.575931
3 597 557 6.700168 360 355 1.388889
4
5 641 619 3.432137 690 1030 -49.2754
6 416 548 -31.7308 340 247 27.35294
7 566 577 -1.94346 588 720 -22.449
8
9 579 607 -4.83592 331 623 -88.2175
10 652 663 -1.68712
11
12 438 255 41.78082
13
14
15 861 232 73.05459
16
17
18 320 160 50
19
20
21 298 104 65.10067
22
23
24
25
26 406 350 13.7931
27
28 749 261 65.15354
29
30
31 575 377 34.43478 710 867 -22.1127
32 541 248 54.15896 788 450 42.8934
33 426 220 48.35681 468 394 15.81197
34 571 151 73.55517 431 319 25.98608
35 503 117 76.73956 454 364 19.82379
36 569 146 74.34095 518 372 28.18533
37 439 113 74.25968 473 428 9.513742
38 402 113 71.89055 567 352 37.91887
39 699 168 75.96567 884 358 59.50226
40 550 117 78.72727 561 383 31.72906
总平均 523.5455 290.9091 43.00728 559.5882 506.5882 6.937682
腈纶废水的平均COD去除率在60%左右,丙烯腈废水的平均COD去除率在41%左右。然而,在启动后第29天将好氧反应器的进水中加入葡萄糖,COD调至200mg/L,在第34天加入葡萄糖400mg/L,通过图11可以看到:两者的COD去除率均有改善。此时,SBR对腈纶废水的COD去除率在75%,对丙烯腈废水的COD去除率为46%,虽然丙烯腈废水的COD去除率有小幅度提高,然而实际上腈纶废水的进水COD维持不变得同时,出水COD在大幅下降,丙烯腈废水的进水COD在维持不变的同时,出水COD也同比增加,即说明对于实际废水中的丙烯腈的去除率没有较大提高。所以这说明,单从COD的角度,对于丙烯腈废水不可直接运行SBR工艺,需要必要的预处理。
此外,上述试验也间接表明,在反应器的启动期加入某些易降解的物质,如葡萄糖等,可以为微生物提供碳源,促使其生长,加快启动的效率,缩短启动周期,同时也可以提高对污染物的去除率。
由于SBR工艺独特的运行方式,目前国内外很多学者证实在各种基质和运行条件下都可以实现SBR反应器中污泥的颗粒化。与传统活性污泥相比,好氧颗粒污泥在废水处理效果上显示出明显的优势:A、提高了反应器的生物浓度(反应器中MLSS>5g/L),由于生物处理单元污染物的去除主要是通过反应器中持留的微生物完成,因此通过污泥颗粒化技术可以大大增强SBR反应器生物处理的潜力;B、沉降性能好,颗粒污泥的沉降性能是其最突出的特点,一般其SVI值都小于100mL/g;C、污泥活性高,据有关试验测定,单位质量的微生物单位时间对氧气的吸收量(WOUR)为1.27mg(O2)/(g(VSS)•min),而普通活性污泥法的WOUR值为0.8 mg(O2)/(g(VSS)•min)左右,由此可见,好氧颗粒活性污泥的生物代谢活性明显高于普通活性污泥。另外,好氧颗粒污泥还具有负荷高抗冲击负荷能力强、较高的反应器换水率和传质速率等优点。因此,通过应用本实验室已经掌握的好氧颗粒污泥关键培养技术在SBR反应器中实现好氧污泥的颗粒化可以大大改善其处理效率和出水水质。
以上几种情况是腈纶废水生化处理过程中经常遇到的。当出现某种情况时,要冷静地分析原因,采取相应的对策,也要马上采取措施挽救活性污泥。污泥是污水处理的基本要素,同时在实际废水处理运行中,务必要加强监测和检查,充分发挥调节池的均质作用,保证进入生化处理系统的废水符合进水指标,尽量避免以上几种情况发生。
『贰』 各种工业废水的产量去哪里可以查到
可以使用《第一次全国污染源普查工业污染源产排污系数手册》,是2008年2月,国务院第一次全国污染源普查领导小组办公室编发的,按照行业分类可已查到
『叁』 腈纶废水有单独的排放标准吗
1997年来12月31日之前建设乮包括改、扩乯源的石化企业丆COD一级标准值由100mg/l调整为120mg/l•C有单独外排口的特殊石化装置的COD标准值按照一级丗160mg/l•C二级丗250 mg/l执行丆特殊石化装置指丗丙烯腈-腈纶、己内酰胺、环氧氯丙烷、环氧丙烷、间甲酚、BHT、PTA、奈系列和催化剂生产装置。
『肆』 晴纶是什么材料
聚丙烯腈或丙烯腈含量大于85%(质量百分比)的丙烯腈共聚物制成的合成纤维。
衣服主要有内三大材料,分别是容:晴纶、纤维和棉。睛纶是一种合成纤维制成的面料,所以晴纶的防水性比较好,且不易皱,多是用来做风衣之类。不过睛纶脏了很难洗,特别是黑色的风衣,而且睛纶对皮肤刺激性大,不是做衣服的好选择。
所以,一般来说比较好的衣服是百分之30左右的纤维+70左右的棉做成的,这样的衣服不易起皱,还容易清洗,对人体皮肤也不会产生刺激性。
(4)腈纶废水来源扩展阅读:
氨纶氨纶的学名为聚氨酯弹性纤维,国外又称“莱克拉”,“斯潘齐尔”等。它是一种具有特别的弹性性能的化学纤维,已工业化生产,并成为发展最快的一种弹性纤维。
氨纶弹性优异。而强度比乳胶丝高2~3倍,线密度也更细,并且更耐化学降解。氨纶的耐酸碱性、耐汗、耐海水性、耐干洗性、耐磨性均较好。
氨纶纤维一般不单独使用,而是少量地掺入织物中,如与其它纤维合股或制成包芯纱,用于织制弹力织物。
聚烯烃弹力纤维,聚烯烃弹力纤维是采用热塑性弹性体经熔融纺丝而成的,能耐220℃的高温,具有耐氯漂及强酸强碱处理,具有较强的抗紫外线降解等特性的新型弹力丝。
『伍』 腈纶来源于哪
腈纶学名聚丙烯腈纤维,近火软化熔缩,着火后冒黑烟,火焰呈白色,离火焰后迅速燃烧,散发出火烧肉的辛酸气味,烧后灰烬为不规则黑色硬块,手捻易碎。
『陆』 电镀废水中含氰废水的处理方法有哪些
1·各种处理方法简述
国内含氰废水处理方法比较多[3,4],但应用哪一种工艺主要决定于含氰废水的质量浓度、性质以及实际处理的效果。废水中氰的质量浓度可粗略分为高、中、低3种。一般情况下,成分复杂的高质量浓度废水CN>800 mg/L,也有多种废水氰的质量浓度在(1-10)×103 mg/L之间,可先采用酸化法回收氰化物,残液再继续氧化处理。中质量浓度含氰废水一般在200 mg/L~800 mg/L之间,根据废水成分的复杂程度选择处理工艺;废水成分简单、回收氰化物有经济效益的,适合先采用酸化法,残液再继续采用二次处理;酸化回收无经济效益的废水,可直接采用氧化法进行破坏。在国内实际生产时,高、中质量浓度(接近800 mg/L)含氰废水一般根据成分复杂程度而决定采用的工艺方法;有些成分简单的废水,也可以先回收氰化物,回收后残液再直接进行氧化破坏CN-,中、低质量浓度的废水均采用直接氧化处理工艺。近些年,回收氰化物的方法较多,如酸化挥发-碱吸收法、萃取法、酸沉淀-中和法(两步沉淀法)、三步沉淀法等。目前,厂矿企业实际采用单一处理工艺的较少,因单一工艺处理很难达到国家排放标准,大部分企业均采用多种组合的工艺进行处理。主要组合处理工艺是酸化回收与直接氧化的技术结合,另一种组合是直接氧化、自然净化[5]与活性炭吸附工艺[6]的技术组合,许多新的废水全循环技术组合工艺也是主要发展趋势之一。含氰废水处理方法的选择主要根据废水的来源、性质及水量来决定。其中包括化学法、物理化学法、物理法及生化法,但是运用最多的是采用化学法来处理含氰废水。以下主要对几种常用的物理、化学法处理含氰废水进行介绍。
2·常用处理技术
2.1加酸曝气法
这是已进入实用化阶段的方法,在美国等一些国家中正在兴建一定规模的设施。最初试验室在中性液中利用曝气来把氰排除到大气中去,以后改进为先加酸使污水最大限度地酸化,然后进行曝气,这样可以更有效地去除氰。所使用的酸通常是硫酸。虽然也有利用烟气来进行酸性化的建议,但尚未到成熟阶段,所以没有普及。此法的效果受曝气程度和酸性化程度的支配,按照实例来看,当pH为2.8时,对含氰浓度达500 mg/L的污水进行曝气,可以获得含氰浓度为0.09 mg/L~0.14 mg/L的处理水。因为在实施此法以后,氰仍保持原有状态,作为有毒气体而被排放到大气中,既要有利的厂址条件,又必须具备高烟囱,因而只有在极有限的地区,才有采用此法的可能。如用液碱来捕集已气化的氰,这样既可弥补上述缺点,还可回收氰。
2.2络盐法
20世纪70年代,国内企业有的曾经采用该方法,但现在均不采用。从环境安全防范的观点出发,这种方法可以作为氰化物产生突发性污染事故时而采用快速补救的方法之一,硫酸亚铁溶液投入水中可以迅速降低水中含氰污染物所造成的危害程度,减小对环境的危害,特别是对水生生物的伤害。废水中CN-质量浓度很低时,该方法处理效果不好。可以使用的药品虽多种多样,但最广泛使用的是硫酸亚铁。该法利用硫酸亚铁与氰形成络盐,然后使络盐沉淀并加以除去。硫酸亚铁法将氰化物转化为铁的亚铁氰化物,再转化成普鲁士蓝型不溶性化合物[7],然后倾析或过滤出来。
其特点是操作简单,处理费用低,且可回收普鲁士蓝沉淀作颜料。缺点是处理效果差,淤渣很多,分离出不溶物后的废水呈蓝色,浓度超过一定限度,就不能被去除。从反应的平衡来看,上述浓度过高,去除率下降是难以避免的问题,按一般情况来说,用石灰等使水的pH值保持在7.5~10.5之间,这样就使沉淀生成处于最佳状态。但即使采用上述措施,因为含氰量在一定数值以下,就不再降低,在处理含氰浓度低的污水时,其效果是微小的。如改用镍做处理剂,其效果虽比铁有利,但价格昂贵。熊正为[8]对硫酸亚铁法处理电镀含氰废水进行了试验研究,探讨了硫酸亚铁除氰的原理及其去除效果。试验结果表明:硫酸亚铁法处理电镀含氰废水,硫酸亚铁加入量为理论值的1.69倍,0.1%PAM絮凝剂用量为1 mg/L时,氰化物的去除率可达98%,同时还可去除部分重金属污染物和COD,COD可去除约59%;pH值对除氰效果的影响较大,CN-与硫酸亚铁络合成亚铁氰化物时pH值控制在9.50~10.50,生成的亚铁氰化物再转化成较稳定的普鲁士蓝型不溶性化合物须将pH值反调控制在7.00~8.00时,除氰效果较好。
2.3臭氧处理法
近年来,用臭氧处理氰化物方法的研究,开展得相当普遍,但由于电力费用高昂的缺点,所以还没达到一般性的实用化阶段
O3+KCN→KCNO+O2
KCNO+O3+H2O→KHCO3+N2+O2
臭氧在水溶液中可释放出原子氧参加反应,表现出很强的氧化性,能彻底氧化游离状态的氰化物。铜离子对氰离子和氰根离子的氧化分解有触媒作用,添加10 mg/L左右的硫酸铜能促进氰的分解反应。
臭氧法的突出特点是在整个过程中不增加其他污染物质,污泥量少,且因增加了水中的溶解氧而使出水不易发臭。采用臭氧氧化法处理废水中的氰化物,只需臭氧发生设备,无需药剂购置和运输,而且工艺简单、方便,处理后废水总氰化物质量浓度可以达到国家污水综合排放标准,处理废液中不增加其它有害物质,无二次污染,不需要进一步处理。但是,由于臭氧发生器产生臭氧的成本高、设备维修困难,工业应用受到了一定限制。只要臭氧发生器能突破产生臭氧的瓶颈,工业应用前景非常广阔。臭氧氧化法要消耗大量的电能[9],在缺少电力的地方难以应用。我国已有臭氧发生装置成品出售,一些工厂目前正在使用这种处理技术。应该指出的是目前的臭氧发生器能耗很大,生产1 kg O3耗电12 kW·h~15 kW·h,处理费用较高。除个别地方外,一般难以达到废水处理的经济要求。另外,单独使用臭氧不能使络合状态存在的氰化物彻底氧化。颜海波[10]等采用臭氧技术对电镀含氰废水进行处理,电镀含氰废水中的CN-浓度在30 mg/L~36 mg/L之间,采用以臭氧为氧化剂的活性炭催化氧化技术处理后,CN-的出口浓度<0.5 mg/L,去除率在97.7%以上。该处理系统实现了废水处理自动化,具有投资省、效果好、成本低、运行稳定等优点,且不会产生二次污染,值得推广应用。
2.4过氧化氢法
2.4.1碱性条件
在常温、碱性(pH=9.5~11)、有Cu2+作催化剂的条件下,H2O2能使游离氰化物及其金属络合物(但不能使铁氰化物)氧化成氰酸盐,以金属氰络合物形式存在的铜、镍和锌等金属,一旦氰化物被氧化除去后,他们就会生成氢氧化物沉淀。那些过量的过氧化氢也能迅速分解成水和氧气。污水中亚铁氰化物被铜沉淀而除去。其反应方程式如下。游离氰化物与过氧化氢反应的方程式:
上述反应中生成的氰酸盐水解生成铵离子和碳酸盐离子或碳酸氢盐离子,水解速度取决于pH值。一般情况下,硫氰酸盐不会或很少被氧化。污水处理过程中,含氰络合物的反应顺序如下:
2.4.2酸性条件
一般将废水加热至40℃,在不断搅拌条件下加入含有少量金属离子作催化剂的H2O2和37%甲醛的混合溶液,再搅拌1 h左右完成反应。反应在酸性条件下分两步进行:
此法适用于浓度波动较大的含氰废水的处理,整个过程无HCN气体产生,操作安全,但所需试剂费用较高。山东黄金集团有限公司三山岛金矿采用过氧化氢对含氰污水酸化回收后尾液进行二次处理[11]。
近1 a的生产应用情况表明,该法具有工艺操作简单、投资省、成本低等优点,能容易地将含氰(CN)-5 mg/L~50 mg/L的酸化回收尾液处理到<0.5 mg/L,药剂费用为7.56元/m3。
2.5碱性氯化处理法
目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难。
通过氯处理来分解氰化物的可能性,早已肯定,可是在初期氯处理是在酸性溶液中进行,因而有浓度相当大的氯化氢有毒气体产生,操作也很不安全。但如果在碱性条件下进行氯处理,中间产物氯化氢几乎在一刹那间都转化为氰酸盐,于是此法在氰化物处理方面已成为实际的而且安全的方法。该法的原理是废水在碱性条件下,采用氯系氧化剂将氰化物破坏而除去的方法,处理过程分为两个阶段,第一阶段是将氰氧化为氰酸盐,对氰破坏不彻底,叫做不完全氧化阶段,该工艺的原理是在碱性条件下(一般pH≥10),用次氯酸盐将氰化物氧化成氰酸盐。
CN-+ClO-+H2O→CNCl+2OHCNCl+2OH-→
CNO-+Cl-+H2O
将两式合并,得
CN-+ClO-→CNO-+Cl-
CNO-+2H2O→CO2+NH3+OH-
局部氧化法破氰反应生成的氰酸根的毒性是CN-的1/1 000,所以有的厂在废水浓度比较低时,废水经局部破氰处理后就排入后续的处理金属离子的处理设施。但是,CNO-毕竟是有毒物质,在酸性条件下极易水解生成氨(NH)3。pH反应条件控制:一级氧化破氰:值10~11;理论投药量:简单氰化物CN-:Cl2=1:2.73,复合氰化物CN-:Cl2=1:3.42。用ORP仪控制反应终点为300 mv~350 mv,反应时间10 min~15 min。
第二阶段是将氰酸盐进一步氧化分解成二氧化碳和水,叫完全氧化阶段。在局部氧化处理的基础上,调节废水的pH(一般pH≥8.5),再投加一定量的氧化剂,经搅拌使CNO-完全氧化为N2和CO2。
pH反应条件控制:二级氧化破氰:pH值7-8(用H2SO4回调);理论投药量:简单氰化物CN-:Cl2=1:4.09,复合氰化物CN-:Cl2=1:4.09。用ORP仪控制反应终点为600mv~700mv;反应时间10min~30min。反应出水余氯浓度控制在3 mg/L~5 mg/L。
滕华妹[12]等采用两级碱性氯化法处理工艺对杭州西尔灵钟厂含氰废水进行处理,间隙法操作,手工控制投药量,原废水含氰浓度59.8 mg/L~141.1 mg/L,平均为84.6 mg/L,分段调节pH,采用自制的机械搅拌器搅拌,根据在实验室测得的氰化物浓度,分段计算投药量,废水处理取得很好的效果,排放废水中氰化物浓度均小于国家排放标准0.5 mg/L。另有采用次氯酸钠、亚氯酸钠、漂粉等替代氯气的方法,其原理和方法与通氯气相同,而类似加氯器的特殊装置却不再需要,而且可以避免氯气泄露的危险,它适用于小规模的污水处理。在已决定采用这种处理法的场合,必须考虑到残存的氯在放流目的地所发生的影响。
2.6食盐电解法
通过食盐水电解同时生成氯气和强碱,把他们使用于氰的分解。以电镀厂而言,因为容易获得电力供应,所以操作方便,处理药品费用非常低廉。尤其在分批操作时,能够在夜间空闲时间,充分利用原来供电镀操作用的整流器,因而设备费用也可以降低。此法的缺点是电解阳极用的碳极的使用寿命较短。它适用于较小规模的工厂。
(1)隔膜电解法:这是在食盐电解法中使用隔膜的方法,其原理是碱性氯化处理法。食盐中如有很多杂质,隔膜所用的石棉就容易发生间隙堵塞的缺点。在连续运转的场合,使用饱和食盐水,如管理不善,容易发生食盐补充不足的情况,因而分解反应不能继续进行,所以必须经常注意。
(2)无隔膜电解法:进行食盐水的无隔膜电解时,在阳极上有氯气发生,它与阴极上生成的碱反应后,即生成次氯酸盐。
Cl2+2NaOH→NaOCl+NaCl+H2O
如把生成的此氯酸盐加注在含氰污水中,氰就被氧化而生成氰酸盐。
NaCN+NaOCl→NaCNO+NaCl
并且进一步分解为碳酸气和氮气。
2NaCNO+3NaOCl+H2O→2CO2+N2+NaOH+3NaCl
3·含氰废水生物处理方法的应用进展
有学者[13]采用BOD5/COD比值法和好氧呼吸曲线法在国内外首次针对高浓度有机氰废水及其污染物进行了全面的好氧可生化性研究,结果表明,低浓度氰工艺含氰废水在低浓度下,可生化性较好,在高浓度下,可生化性较差,浓度过高的甚至无法被好氧生物降解;肖敏[14]等在30℃条件下,采用血清瓶液体置换系统,撒气厌氧水化反应设备条件,测定了丙烯腈、腈纶生产过程废水等各种高浓度有机氰废水的厌氧生物可降解性及废水中丙烯腈、乙腈和氰化物等主要污染物对产甲烷菌的毒性。结果表明,丙烯腈在低质量浓度下为代谢毒素,厌氧菌产甲烷活性在恢复试验中得到恢复,在高质量浓度(>120 mg/L)为生理毒素,毒性引起的产甲烷活性受抑制,但在短时期内得到恢复;氰化物在低质量浓度下为生理毒;较高质量浓度下(25 mg/L)为杀菌性毒素,厌氧菌细胞已遭受严重破坏,无法修复;乙腈始终为代谢毒素;张力等[15]采用膜分离技术处理丙烯晴含氰废水,处理后外排氰根离子浓度CN-<0.0005%,COD<1 500 mg/L,表明了使用超滤膜对原水能有效的净化,并在一定程度上能降低原水的COD含量。
『柒』 生物在水体自净过程中的作用
1 降解由人造成的有机物的污染,使有机排放物降解成小分子。
2 富集并吸收水体中的重金属离子。
3 浮游植物光合作用释放活性氧,帮助小分子的氧化分解。
『捌』 化工污染源及治理措施
石油化工污染源概述 一、前言 凡是向环境排放有害物质或对环境产生有害影响的场所、设备和装置统称为污染源。通过污染源的调查积累了基础数据资料,再经过污染源的评价可了解企业的污染源的特点,结合本地区环境保护目标制定出污染综合防治规则。 石化工业是以石油和天然气为原料,通过各种不同工艺途径制成所需的油品、化工产品和生活用品。石油化工过程中使用的原料、生产过程、产品(包括副产品)都有可能产生污染物,其排出污染物的种类和数量是随着生产工艺、生产规模所采用不同的原材料及产品品种的变化而改变。 二、石油化工废水污染源及治理 由于石化生产的产品品种繁多,废水中的污染物十分复杂。其特点是废水量大、组分复杂。例如炼油厂平均每加工一吨原油产生的废水量为0.3-3.5吨。石油化工废水中主要污染物有石油类、硫化物、酚、丙烯腈、醛类、三苯、含氮化合物、部分有机物、部分重金属及含酸、碱废水。 1、含油废水 主要来源:工艺过程与油品接触的冷凝水、介质水、生成水,油品洗涤水、油品运输船压舱水、循环冷却水、油品油气冷凝水、焦化除焦废水及受油品污染的地面水。 主要污染物:油,有的含油废水含有酚、硫化物等。 处理原则:在装置或罐区预先隔除浮油,后排入污水处理厂再处理。此方法简单、费用低、效果好,能就地回收油品。 2、含酚废水 主要来源:常减压延迟焦化、催化裂化及苯酚-丙酮、间甲酚、双酚A等生产装置。 主要污染物:酚 处理原则:对于含酚量低,无回收价值,可与全厂废水混合后不加预处理直接排入污水场。如含酚废水酚含量较高(>1000mg/l)应在装置区内回收或进行预处理再排入污水厂。 3、含硫废水 主要来源:炼油厂二次加工装置、分离罐的排水、油品和油气的冷凝分离水、芳烃联合装置。 主要污染物:硫化物(S2-) 处理方法:空气氧化法和水蒸气汽提法。 4、含氰废水 主要来源:丙烯腈装置、腈纶厂聚合车间、纺丝车间及回收车间的排水、丁腈橡胶装置。 主要污染物:丙烯腈、乙腈、异丙醇。 处理方法:目前常用塔式生物滤池法(又称生化塔),效果很好。 5、含醛废水 主要来源:乙醛装置、维纶抽丝装置、醋酸乙烯装置、甲醛装置等。 主要污染物:乙醛、甲醛、甲醇、丙烯醛。 6、含苯废水 主要来源:制苯车间、苯乙烯装置、聚苯乙烯装置、乙基苯装置、烷基苯装置以及乙烯装置的裂解急冷水洗废水。 处理方法:一般常用吹脱法,另有活性碳吸附法。 7、含酸碱废水 主要来源:炼油厂、石油化工厂的洗涤水,成品罐的切水、锅炉水处理排水及酸碱汞房的排放水。 治理方法:低浓度含酸废水常用中和法和综合利用的方法,高浓度含酸废水治理方法有塔式浓缩法、鼓泡浓缩法、浸没燃烧法等。 三、石油化工废气污染源及治理 石油化工废气主要来源于加热炉和锅炉排出的燃烧气体、生产装置产生过剩气体、热电厂燃烧排出废气、在贮运和设备运转产生的跑、冒、滴、漏都构成石油化工的大气污染源。 主要污染物是二氧化硫、氮氧化物、烃类、乙烯、一氧化碳、恶臭、丙烯腈及颗粒状物质。 大气污染物的排放量与所采取的加工工艺综合利用和回收方法有关。 治理原则:1、结合技术改造采用少污染或无污染的工艺。 2、加强环境管理和应用新治理技术。 3、废气、废水、废渣的再利用。 四、石油化工废渣污染源及治理 石油化工在生产过程中产生废渣种类繁多,成份复杂,大多数属于化工废渣,主要有酸渣、碱渣、油污泥、白土渣、废催化剂、活性污泥、苯酸废渣、煤渣、粉煤灰、废丝、废块等。 处理方法:1、废渣的再资源化。 2、废渣的处理(化学处理、脱水、焚烧)。 3、废渣的堆存。 总之尽可能要变废为宝,再资源化,减少废渣对环境的污染。 五、结束语 了解源头分布是为了找出污染源,减少、消除污染源,为此一方面在工程设计上要正确划分废物系统,采取有效的治理方案,另一方面要在管理上实行严格控制,做到标本兼治,以防为主。
『玖』 怎样深度处理腈纶废水
腈纶废水属于难降解工业废水, 从全国范围看,腈纶工业废水的处理普遍不理想。腈纶废水主要是指腈纶生产过程中产生的含氰废水,含有多种污染物质。由于腈纶废水很难生物降解,并且存在着 生物抑制性成分,因此其处理工艺和方法相对比较复杂。腈纶废水主要生产工艺路线的生产特点决定腈纶废水的主要处理方法的工艺。建议先建立腈纶废水预处理体系,后进行生化处理。
请参阅如下:
工艺选择及其依据
根据含氰污水的水质特性及其具有较高的浓度冲击和毒性冲击的特点。通过对其他同类型污水处理工程的类比分析,对该污水处理工程的工艺简述如下。丙烯腈、腈纶生产污水是属难处理的化工污水之一,由于某些成分对微生物有抑制和毒害作用,降解缓慢,所以要使CODcr、NH3-N、氰化物等多项指标达到排放要求采用单一的处理方法往往不能奏效,需采用生物、化学、生物物理等综合处理方法;否则,如采用一种方法会造成基建或运行费过大的问题。如采用单一化学氧化的方法,会造成运行费用过高,采用单一生物法会造成基建费过高。对于难处理的石油化工污水可以采用多种方法相结合的工艺流程,对不同的处理阶段和不同的污染物采用相应的处理方法进行有效的处理,达到高效、经济、合理。
由于污水的组成复杂,工程采用化学法进行预处理,采用生物法进行主体处理,采用生物物理法进行后续处理,最终达到采用较低投资和运行成本,实现处理出水达标的目的。
预处理系统:为了排除高浓度及毒性的冲击,在预处理系统中必须设置事故池。在含氰污水中主要防治氰根浓度的冲击问题,一般情况下未经含氰污水驯化后的微生物对氰根的承受能力为1~2 mg/L,经含氰污水驯化后的微生物对氰根的承受能力为3~5 mg/L。当污水中的氰根含量大于5 mg/L时,微生物将产生中毒,在生化反应池中活性污泥会产生离散、上浮现象,微生物失去活性,出水水质恶化。由于丙烯腈、腈纶生产污水中氰根浓度一般小于5 mg/L,当生产系统出现故障或某工程的操作失误会造成生产污水中氰根含量大于5 mg/L时,处理系统将这一现象视为事故状态。预处理中将事故状态的高浓度含氰污水排入事故池,采用小流量逐步排出的方法,再进入处理系统。
其二,通过化学混凝气浮去除部分悬浮固体及胶状物质(一部分低聚合物);混凝气浮对去除污水中悬浮物和胶状物是一种最有效的方法之一。在凝聚剂和助凝剂的作用下不仅能去除悬浮物和胶状物,同时还能去除一部分大分子结构的溶解性有机物。去除污水中的大分子结构的溶解性有机物采用混凝的化学法已被公认,然后通过生物水解酸化作用把剩余的大部分大分子有机物转化为小分子物质,即可提高BOD/COD比值,约为20%,COD的去除率可达到30~40%,使主体处理系统发挥更大的能力。
主体处理系统:主体处理系统处理效果的好坏直接影响到能否达标的关键。选择具有同时去除C和N的生化工艺是比较经济而有效的方法。
后续处理系统:根据处理后出水水质要求达到COD≤100 mg/L,NH3-N≤25 mg/L等排放标准,在预处理、主体处理系统后,还必须加入后续处理系统来保证出水水质达标。在化工污水的处理过程中,一般通过预处理和主体处理系统后污水中的易生物降解物质均被去除,而存下一部分为难生物降解物质,如部分残留的大分子有机物(如低聚合物等)和微生物代谢物质,而这部分物质浓度低(接近排放标准值),这些物质主要以COD值出现在水中,在普通的生化反应池内难以降解;在后续处理系统中必须选择具有对难降解物质能有效去除的工艺,才能保证处理后出水达标排放。
建议采用SBR工艺运行模式,其操作由进水、曝气反应、沉淀、排出和闲置5个基本过程,从进水至闲置间的工作时间为一个周期。在一个周期内的5个过程都在一个反应池内按程序完成,整个处理系统可以通过二个或二个以上的反应池进行组合交替完成。由于SBR工艺流程短,反应过程在一个池内按时间程序完成,所以在时间程序中进水阶段可以降低曝气强度使池内产生缺氧状态,而曝气阶段的时间可根据实际反应时间而定。通过时间顺序可以对缺氧、好氧的比例进行调整,使处理系统更适应水质的变化和达到期望的出水标准;通过时间程序可控制沉淀出水水质,根据活性污泥的实际沉淀时间使出水SS浓度更低。