超声臭氧印染废水
❶ 臭氧+曝气生物滤池联合处理印染废水二级出水的去除率
没做过强氧化预处理的
工艺
。但能给你一些参考。bod、cod只是对于水体污染的一专个
指标
,并属不能通过工艺直接计算出对
污染物
的去除率,关键要看
原水
污染物具体是什么,像你这么大的
水量
最好不要冒然定工艺,最好先做小试。bod的去除工艺相对简单,并且成熟。最好能先确定臭氧氧化后cod-bod的转化率。
❷ 臭氧紫外活性炭处理印染废水
臭氧紫外活性炭处理印染废水:活性炭被广泛应用于生活用水、工业用水和废水的深度回净化及气相吸附,如石油化答工、电厂、食品饮料、制糖制酒、医药、养鱼等行业水质净化处理,能有效吸附水中的游离氯、酚、硫和其它有机污染物,特别是致突变物(THM)的前驱物质,达到过滤除杂去异味.还可用于车间尾气净化、溶剂过滤、脱色、提纯等,气体脱硫、石油催化重整,气体分离、变压吸附、空气干燥、食品保鲜、防毒面具、解媒载体,有机溶剂回收;贵重金属提炼;化学工业中的催化剂及催化剂载体等功能.
对于一些很小的颗粒,活性炭的效果不明显.可以加入促凝集(如明矾、三氯化铁)再加入活性炭.
❸ 印染废水常规的处理方法有哪些,各有何优缺点。。谢谢,急啊
都有这么些工艺~~具体选哪样要看你水质如何要达到什么排放标准~~最重要的是内肯花多少钱容去做
水解酸化—UASB—SBR[1]
水解酸化—生物接触氧化[2]
活性污泥—接触氧化[3]
椎流式曝气增氧活性污泥[4]
涡凹气浮(CAF)-A/O工艺[5]
缺氧-好氧-压滤-富氧生物炭处理[6]
改良厌氧—生物接触氧化[7]
水膜除尘-水解酸化-接触氧化[8]
混凝—生物膜曝气—氧化塘[9]
微电解-炉渣吸[10]
新型内电解铁屑过滤塔-生物接触氧化池[11]
混凝—水解酸化—接触氧化[12]
接触氧化—电解[13]
二级生物接触氧化-砂滤-活性生物炭[14]
水解—混凝—复合生物池[15]
水解-接触氧化-气浮[16]
水解—接触氧化—活性炭 [17]
❹ 印染废水臭氧化脱色法优缺点
臭氧脱色具有相对工艺成熟的特点,脱色效果较为明显。缺点一方面是臭氧需要一定的浓回度才能有效发答挥作用,在此前提下,臭氧发生器功率较大,运行费用较高;另一方面印染中有些布料采用PVA浆料的,则退浆废水含有较高PVA, 臭氧是无法有效降解PVA的。
采用微电解联合催化氧化工艺可以同时达到降解PVA,处理色度,降低COD的效果。但由于此工艺一次性投资比其他工艺高一些,一般印染企业难以接受。
❺ 臭氧是如何处理印染废水
废水中部分化学物质,生物稳定性较好,化学稳定性较差。印染废水中多含芳专香族偶氮属化合物,部分该类物质对生化细菌具毒性无法生物降解,难以采用或直接采用生物法处理。
利用臭氧氧化分解废水中显色物质,实现废水脱色。为不断提高臭氧氧化效率,科学人士和环境工作者不断研究深化,目前较为成熟的臭氧联用技术有以下两种
一、O3/UV联合氧化技术
二、O3/超声波组合技术
❻ 用超声波预处理焦化废水,过程中暴气,氩气有用过的吗,有没有合适的条件
最好你自己看PDF,哪有清楚
超声波技术及其在水处理中的应用
龚安华罗亚田李端林
(武汉理工大学资源与环境工程学院,武汉,430070)
摘 要
本文综合了近几年的国外文献,讨论了超声波处理废水的机理、影响因素及应用领域,提出了
超声波在废水处理领域存在的一些问题。
关键词:超声波气穴自由基水处理应用
1 前言
由于生物处理对有些物质不能适用,这一传统
的水处理方法已经难以满足人们对于环境质量的严
格要求。于是一些新的水处理方法逐渐兴起,这些
方法有些是彻底地处理废水,有些是降低废水的毒
性以便进一步地生物处理。气穴技术就是其中之
一,它能够用来有效地破坏或者改变复杂化合物及
难以生物降解材料的结构。
超声波由于能产生气穴,从而能氧化分解传统方
法所不能处理的废水。这一特性使其在废水处理领域
有着广泛的应用前景。一般来说,产生气穴的方式有
四种:超声波、水力、粒子及光子。其中,利用超声波产
生气穴和基于这一原理的声化学反应器引起了人们的
广泛兴趣。自上个世纪60 年代声化学发展以来,用超
声波能量处理工业和生活污水得到了大量地应用。而
事实上,由于人们对降低有毒污染物的需求越来越来
高,超声波在水处理领域得到了不断地发展。许多研
究人员在实验室里利用超声波反应器完成了对用传统
的方法难以处理的物质[1] 。
2 超声波反应机理及影响因素
211 超声波反应机理
表1 不同化合物的降解[2 ]
反应物超声波化条件主要中间产物主要机理
苯酚20 、487kHz 、30W、空气、01 5mm 对苯二酚、萘酚、苯醌等自由基
22氯苯20kHz 、50W、空气、01 05mm 萘酚、32氯萘酚、氯化物自由基
32氯苯酚20kHz 、50W、空气、01 05mm 氯化对苯二酚、32氯萘酚、42氯萘酚自由基
42氯苯酚20kHz 、50W、空气、01 05mm 对苯二酚、氯化物自由基
2 ,42二氯苯酚氩气22氯苯酚、42氯苯酚、2 ,4 二氯苯酚自由基
硝基苯酚011mm 亚硝酸盐、硝酸盐、蚁酸等自由基和热解
氯苯20 、487kHz 、30W、空气、氩气,氧气、01 5mm 42氯苯、对苯二酚、乙炔自由基和热解
四氯化碳20 、500kHz、30W、空气、01 035mm 四氯乙烯、六氯甲烷热解
氯仿200kHz 、空气、氩气热解
超声波是指频率在2000Hz 以上的声波,它具
有声波的普遍特性。但是由于其频率高于一般声
波,因而就有一些特殊的性能。虽然超声波化学转
化的有关机理还不是很清楚,研究人员[2 ] 提出了以
下几种反应机理:热分解、羟基自由基氧化、等离子
化学和超临界氧化。热分解发生在气穴内部,主要
表现在当溶剂或待分解物渗透进入气泡后被分解。
事实上,往往在气泡里的能量不足以打断化学键,而
在水溶液中,主要的热分解反应是对水的分解。这
一热解反应导致了在气泡中产生了活性相对较高的
48 四川化工 第9 卷 2006 年第1 期
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
自由基,这些自由基会在气泡里或者气泡周围重新
结合。否则,在这些自由基进入溶液以后可能与一
些大分子接触从而氧化它们。羟基自由基氧化与热
解之间的比率取决于溶质的位置,要看是在气泡里
或者是界面层,还是在溶液里。但是,归根到底取决
于物质的物理化学性质。表1[2 ] 是一些物质的情况
反映。
当然,仍然有一些参数还不是很清楚。研究人
员[2 ] 提出决定化合物进入气泡的性质不是其蒸汽压
而是其疏水性。因此,亲水的化合物如苯酚和氯酚
可能会在溶液中或者界面处受到羟基的攻击。其它
的一些疏水性化合物如四氯化碳、苯和氯苯可能主
要是在气泡中热解。但是,其它的情况也有可能影
响降解的位置,也有些情况是一些机理的互相竞争。
总之,疏水性化合物和挥发性化合物易于被超声波
降解,而不挥发和亲水性化合物超声波是难以降解
的。
另一种反应的机理是等离子化学。这与超声波
发光与光致发光之间的关系和光化学与声化学之间
的关系相似。这种等离子的效应是由于对超声波能
量的吸收,从而在气泡中形成为等离子体。
以上提到的假设可以归结为超临界水的声化学
反应。事实上许多的研究人员都发现[ 2 ] ,在气泡和
溶液的界面层存在着超过临界条件的高温高压
(647 K、2211MPa) ,这使得媒介有流体的物理性质。
这些条件可通过改变溶质的溶解度和分散度来改善
反应。但是,超临界水的界面自由基只有几毫秒的
寿命和几毫米的范围。
212 反应的影响因素
超声波反应中,分解化合物的性质是决定反应
进程的主要因素。而其它反应条件对反应进程也有
不同程度的影响,其主要体现在对反应常数的影响。
研究人员[3 ] 在分解芳香族化合物时发现底物的起始
浓度和超声波的能量强度对反应速率有着不同程度
的影响。随着底物浓度的增加反应速率降低。这是
因为由于浓度的升高,导致比热容的降低,而比热容
降低导致了降解速率的降低。而当底物主要是在气
泡中分解时,降解速率取决于气泡的数量。而随着
超声波密度的增加,气泡的数量也会增加,从而提高
了反应的速率。
在反应体系中加入媒介气体对反应的进程也有
不同程度的影响。研究人员[2 ] 在用超声波分解二硫
化碳时发现,在不同的气体媒介中,其反应的速率为
He > 空气> N2O > Ar 。其在He 的反应体系中
的速率是在Ar 中的3 倍。气体的影响因素主要是
体现在对声化气泡间撞击上。气体的许多性质都可
以影响声化反应,如比热容、热导率和溶解性。比热
容影响反应的效果表现在高比热容的单原子比低热
容的多原子能产生更高的温度和压力。而低热导率
的气体降低了气体撞击热能的传递,从而降低了撞
击的温度。气体的溶解度也是一个影响的因素。气
体的溶解度越大,它就越可能扩散到气穴中。这些
溶解的气体为气穴的形成提供核心。
当然还有一些其它的因素如时间、水中干扰物
质、催化剂( TiO2 ) [ 2 、4 ] 等。许多研究表明,无论哪种
因素的影响,超声波反应器的经济性不能忽视。
3 超声波在水处理中的应用
超声波由于其独特的特性,有着广泛的应用范
围。但一般说来,单一的超声波处理并不能达到满
意的处理效果。目前的研究主要集中在超声波与其
它处理方法的联合处理废水。
311 强化生物处理
利用超声波技术可以改善污泥的固2液界面、加
强气体的传质和营养物传递,从而强化生物处理。
O1 Schlafer[5 ] 研究人员利用低功率超声波处理酿酒
工业废水,生物反应器获得了较好的处理效果。在
实验中,超声波功率为013W/ L 、频率25kHz。经过
超声波处理后的生物絮体浓度由0112g/ L 增加为
014g/ L ,处理效率提高了50 %。
宁平等[6 ] 利用超声波辐射2活性污泥联合处理
焦化废水,研究表明,当选择空气作为曝气气体,向
废水中曝气而不用超声波时,废水中CODCr 降解率
仅为45 %;在声能强度为11914kW/ m2 条件下,用
超声波时其降解率可达65 %; 当把超声波辐射2活
性污泥联合处理焦化废水时,CODCr 的降解率提高
到81 %。同时发现经超声波预处理后的废水中无
亚硝酸氮,而且加活性污泥后,其耗氧速率有明显的
降低,说明经超声波处理后的焦化废水对生物无毒
性。
第1 期 超声波技术及其在水处理中的应用49
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
312 处理造纸黑液
造纸黑液是由木质素与腐殖酸物质构成的色度
极暗、颜色很深的废液,对其进行处理一直是工业水
处理的难题之一。沈壮志[7 ] 等采用PFS/ H2 O2 与超
声波联合处理,通过对比发现,联合超声波处理后
CODCr的去除率提高了13 %左右、PFS 节约14 %、
H2O2节约50 —80 %。周珊[ 8 ] 等利用超声波技术与
组合高级氧化技术对造纸黑液进行处理。研究发现
在超声波辐照下,可以将造纸废液中大分子有机污
染物部分分解为小分子有机物。在温度30 ℃、p H
为6 条件下,单独超声波辐照4h ,CODCr 去除率为
1715 %、TOC 去除率为1317 %。但在US2H2 O2
2
FeSO4 工艺下辐照4h ,由于活性自由基的产生,使废
液CODCr 去除率高达4719 %、TOC 去除率高达
4518 %。
313 超声波2物理能场分解有机物
在水处理中物理能场的应用比较广泛,将超声
波和其它物理能场(光场、电场、磁场) 相联合是水处
理中的研究方向之一。E1Naff rechoux[9 ] 等将超声
波与紫外光联合处理生活污水分解有机物,研究认
为,在分解有机物过程中存在三种作用: 紫外光分
解、超声波形成羟基自由基氧化分解、紫外光分解空
气产生臭氧氧化分解。付荣英[10 ] 等利用超声波和
紫外光协同作用氧化降解邻氯苯酚,研究表明,紫外
光和H2O2 体系对邻氯苯酚的降解率仅为43 %。而
联合超声波后,降解率可达83 %。这说明超声波与
紫外光产生了协同作用。
超声波与电场联合是一种新型的水处理技术。
刘静[ 11 ] 等利用超声波和电场处理印染废水,在初始
浓度为370mg/ L 、p H = 2 、电压为5V 的最佳条件下
作用60min ,印染废水的脱色率可达9616 %。研究
发现单独超声波对印染废水的降解能力较弱,而超
声波2电场协同作用下的脱色率远大于单一电场作
用。
4 结论
超声波在水处理领域的应用虽然已经得到了人
们广泛地认识,但是有许多问题仍然有待解决。
411 超声波反应的条件控制比较困难。不同的底
物由于其不同物理化学性质,其最佳的分解条件是
不同的,尤其是考虑其经济性时。分解不同的底物
时,为使其达到最佳的分解效果,必须对超声波的强
度、分解时间、催化剂等条件进行试验。
412 到目前为止,超声波技术还没有大规模运用到
实践中,许多的应用都是在实验室里完成。这些试
验都是针对某一类底物,模拟该物质的溶液进行处
理。超声波有待进一步在实践中的考验。
413 超声波大规模应用的问题主要在设备上,研制
出能够连续处理废水、低能耗、大容量的超声波反应
器是关键所在。
参考文献
[ 1 ] Parag R. Gogate ; Sukti Mujumdar ;J agdish Thampi ,Dest ruction
of Phenol using sonochemical reactors : scale up aspect s and compari2
son of novel configuration wit h conventional reactors ,Separation and
Purification Technology ,2004 ,34 :25 —34
[ 2 ] Collins Appaw ; Yusuf G. Adewuyi ,Dest ruction of carbon disul2
fide in aqueous solutions by sonochemical oxidation ,Journal of Haz2
ardous Materials ,2002 ,90 :237 —249
[ 3 ] Yi jiang ; Christian Pet rier ; T. David Waite , Kinetics and mecha2
nisms of ult rasonic degradation of volatile chlorinated aromatics in a2
queous solutions ,Ult rasonic Sonochemisty ,2002 ,9 :317 —323
[ 4 ]Maria Papadaki ;Richard J . Emerya ;Mohd A. Abu2Hassan ;Alex
D′taz2Bustos ; Ian S. Metcalfe ;Dionissios Mantzavinos ,Sonocatalytic
oxidation processes for t he removal of contaminant s cotaining aro2
matic rings f rom aqueous effluent s ,Separation and Purification Tech2
nology ,2004 ,34 :35 —42
[ 5 ]O. Schlafer ;M. Sievers ; H. Klotzbucher ; T. I. Onyeche , Improve2
ment of biological activity by low energy ult rasound assisted bioreac2
tor ,Ult rasonics ,20003 ,8 :711 —716
[ 6 ]宁 平;徐金球;黄东宾;等,超声波辐射2活性污泥联合处理焦化
废水,环境科学,2003 ,3 (24) :65 —69
[ 7 ]沈壮志;程建政;兰从庆,超声波/ PFS 联合对造纸黑液处理的研
究,应用声学,2003 ,2 (22) :45 —48
[ 8 ]周 珊;吴晓晖;黄卫红;等,超声波降解造纸黑液的初步研究,工
业水处理,2002 ,10 (22) :26 —28
[ 9 ] E. Naff rechoux ; S. Chanoux ; Pet rier J . Suptil , Sonochemical and
Photochemical Oxidation of organic matter ,Ult rasonics Sonochemis2
t ry ,2000 ,7 :255 —259
[ 10 ]付荣英;陈 亮;胡牡丹;等,超声波波2光催化氧化降解邻率苯
酚的研究,环境污染与防治,2004 ,2 (26) :116 —118
[ 11 ]刘 静;谢 英;卞华松,超声波电化学法处理印染废水的实验
研究,上海环境科学,2001 ,3 (20) :151 —157
50 四川化工 第9 卷 2006 年第1 期
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
❼ 印染废水,只用臭氧氧化后,水变清之后又变黄是什么原因
水中的化学物质,在一定条件下,又发生了聚合。
❽ 印染废水处理工艺的印染废水处理工艺流程
(一)废水的水质特点以棉纺和混纺产品为主的印染厂,排出的多种废水及水质特点为:
1)退浆废水退浆废水是碱性的有机废水,含多种浆料分解物、纤维屑,酸和酶等污染物。其污染程度视浆料的种类而异。过去多用天然淀粉作浆料,水中BOD高,近些年来,逐渐由化学浆料代替,如聚乙稀醇(PVA),废水中BOD很低,但COD很高,从而降低了废水的生物降解性能。
2)煮炼废水废水呈深褐色,含碱浓度约0.3%,废水BOD和COD均高达数千毫克/升。
3)漂白废水水量大,污染轻,可直接排放或循环回用。
4)丝光废水含氢氧化钠3%~5%,一般通过蒸发浓缩回收,工艺上可重复使用,外排的丝光废水呈碱性,BOD高于生活污水。
5)染色废水主要污染是有机染料和表面活性剂等助剂。水质变化大,色泽深,pH值高。
6)印花废水主要是皂洗、水洗废水。在采用活性染料时要用大量的尿素,故废水中氨氮较高。
7)整理废水水量少,含有各种树脂,甲醛,表面活性剂等。国内几个有代表性印染厂的废水水质见表16-1。
(二)印染废水治理方法
首先,从生产工艺上消除和减轻污染源。如采用干法印花工艺,消除印染废水。按水质特点,分别回收,一水多用;用沉淀、过滤法回收土林染料和磁化染料,用超过滤法回收还原染料、分散染料等。其次,对废水进行无害化处理。对废水中碱度,一般设调节池并保证必要的匀质时间;对色度,根据废水排放和利用要求,可用凝聚法,吸附法。氧化法,电解法等化学或物理法处理,也有培养特殊的细菌在兼气条件下进行脱色。需要指出的是,采用凝聚法对直接染料,还原染料,磁化染料,分散染料的色度,去除效果好,但对酸性染料,活性染料,脱色效果差。活性炭对染料的吸附有选择性,对阳离子染料,直接染料、酸性染料、活性染料等水溶性染料有良好吸附性能,但对硫化染料、还原染料、涂料等不溶性染料吸附性能很差。常用的臭氧氧化剂,对直接染料、酸性染料、碱性阳离子和活性染料等亲水性染料,脱色效果好,对还原染料、硫化染料、分散染料等疏水性染料脱色效果差。废水中大量有机物,通常采用生物法处理能达到较满意的效果;对PVA等化学浆料,可采用生物分解法或回收利用法。在生物分解中,可分别采用高MLSS的一段和二段曝气法及厌氧—好氧串酸处理工艺;在回收利用中,可分别采用胶凝盐析法(投加硼砂及硫酸钠)、凝结剂法(如用芒硝和硼砂作凝结剂)、超过滤法(在北京、上海、河南等厂已采用)。
总之,印染废水处理流程的选择,要根据生产工艺采用的原料、产品种类、加工的方法,工艺过程中投加的药剂,染料、助剂性质以及出水最终去向和要求,分别采用一级化.学和物化处理或二级生物法为主的处理或三级深度处理。
(三)废水处理流程的选择
1)首先考虑清浊废水分流,把一些较浓的染色废水和不易生物降解的废水单独进行化学和物化法回收或处理后,再混合其他废水进行生物处理或排向市政污水处理厂统一处理;
2)如水质允许,采用化学凝聚和加压气浮相结合的处理方法,对小型印染厂可选用国内已有的成套装置,运行费用略高,在一般情况下,处理出水能符合要求。
3)生物处理可优先考虑活性污泥法,传统的鼓风曝气法和延时曝气法均能取得稳定的效果,在曝气4~6小时的条件下,BOD5去除90%,COD去除60~70%。鼓风曝气污泥负荷为0.3~0.5公斤BOD/公斤MLSS·日,延时曝气法采用污泥负荷为0.1公斤BOD/公斤MLS8·日。如采用加速表面曝气法,曝气池与沉淀池宜分建,这样有利于抑制污泥的膨胀,管理较方便,出水水质稳定。
4)当处理出水要求较高或废水处理后作重复使用时,则宜在生物处理后增加吸附或凝聚过滤装置。厌气-好气-活性炭工艺,不仅对化学浆料PVA和色度的去除效果好,而且出水水质好,受到人们注意。
5)关于生物处理中采用生物膜法时:
①接触氧化法-采用容积负荷2.3~5.0公斤BOD/(米·日)。优点是处理时间短且污泥不必回流,但气水比高,基建费和运行费略高。
②生物转盘-适用于处理水量小的印染厂,如水量在1OOO米³/日以内,运行简单,耗电省。关键在转盘材质和转盘前调节池的设置。有机负荷采用15~30克BOD5/(米·日),水力负荷采用0.1~0.25米。/(米·日)。
③塔式滤池-主要特点是省地,它是一个不完全处理构筑物,采用容积负荷1.6~1.8公斤BOD/(米·日)时,COD去除率40%~50%,BOD去除率50%~60%。
❾ 求污水处理方案,最好是臭氧处理方面的,废水是染整废水,COD在17000,PH是13,SS为2000。
通过实验研究了臭氧接触氧化时间对于印染废水中有机物去除效率的回影响。结果表明臭氧对 CODCr的去答除效率并不与接触时间成正比,其反应过程可分为三个阶段,均属于一级反应。也表明单一利用臭氧氧化实现印染废水中有机物的降解不够经济合理。http://tyh.1.blog.163.com/blog/static/74145910201332331227679/