龙腾锐做污水怎么样
⑴ 环保理念,排放污水,气,物,处理构思
现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。以上是污水处理厂处理工艺的基本流程,流程图见下页图一。二.各个处理构筑物的能耗分析1.污水提升泵房进入污水处理厂的污水经过粗格删进入污水提升泵房,之后被污水泵提升至沉砂池的前池。水泵运行要消耗大量的能量,占污水厂运行总能耗相当大的比例,这与污水流量和要提升的扬程有关。2.沉砂池沉砂池的功能是去除比重较大的无机颗粒。沉砂池一般设于泵站前、倒虹管前,以便减轻无机颗粒对水泵、管道的磨损;也可设于初沉池前,以减轻沉淀池负荷及改善污泥处理构筑物的处理条件。常用的沉砂池有平流沉砂池、曝气沉砂池、多尔沉砂池和钟式沉砂池。沉砂池中需要能量供应的主要是砂水分离器和吸砂机,以及曝气沉砂池的曝气系统,多尔沉砂池和钟式沉砂池的动力系统。3.初次沉淀池初次沉淀池是一级污水处理厂的主题处理构筑物,或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面。处理的对象是SS和部分BOD5,可改善生物处理构筑物的运行条件并降低其BOD5负荷。初沉池包括平流沉淀池,辐流沉淀池和竖流沉淀池。初沉池的主要能耗设备是排泥装置,比如链带式刮泥机,刮泥撇渣机,吸泥泵等,但由于排泥周期的影响,初沉池的能耗是比较低的。图一城市污水处理典型流程4.生物处理构筑物污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例,它和污泥处理的单元过程耗能量之和占污水厂直接能耗的60%以上。活性污泥法的曝气系统的曝气要消耗大量的电能,其基本上是联系运行的,且功率较大,否则达不到较好的曝气效果,处理效果也不好。氧化沟处理工艺安装的曝气机也是能耗很大的设备。生物膜法处理设备和活性污泥法相比能耗较低,但目前应用较少,是以后需要大力推广的处理工艺。5.二次沉淀池二次沉淀池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上,能耗比较低。6.污泥处理污泥处理工艺中的浓缩池,污泥脱水,干燥都要消耗大量的电能,污泥处理单元的能量消耗是相当大的,这些设备的电耗功率都很大。三.针对各个处理构筑物的节能途径1.污水提升泵房污水提升泵房要节省能耗,主要是考虑污水提升泵如何进行电能节约,正确科学的选泵,让水泵工作在高效段是有效的手段,合理利用地形,减少污水的提升高度来降低水泵轴功率N也是有效的法,定期对水泵进行维护,减少摩擦也可以降低电耗。2.沉砂池采用平流沉砂,避免采用需要动力设备的沉砂池,如平流沉砂池。采用重力排砂,避免使用机械排砂,这些措施都可大大节省能耗。3.初次沉淀池初次沉淀池的能耗较低,主要能量消耗在排泥设备上,采用静水压力法无疑会明显降低能量的消耗。4.生物处理构筑物国外的学者通过能耗和费用效益分析比较了生物处理工艺流程,他们认为处理设施大部分的能量消耗是发生在电机这类单一的设备上,因而节能应从提高全厂功率因数、选择高效机电设备及减少高峰用电要求等方面入手。他们提出的节能措施既包括改善电机的电气性能,也包括解决运转的工艺问题,还包括污水厂产物中的能量回收(EnergyRecovery)。曝气系统的能耗相当大,对曝气系统能耗能效的研究总是涉及到曝气设备的改造和革新。新型的曝气设备虽然层出不穷,但目前仍然可划分为2类:第1种是采用淹没式的多孔扩散头或空气喷嘴产生空气泡将氧气传递进水溶液的方法,第2种是采用机械方法搅动污水促使大气中的氧溶于水的方法。微孔曝气,曝气扩散头的布局和曝气系统的调节这些都是节能的有效措施。在传统活性污泥处理厂曝气池中辟出前端厌氧区,用淹没式搅拌器混合的节能、生物除磷方案。这一简单的改造可以节省近20%的曝气能耗,如果算上混合用能,节能也达到12%。自动控制系统的应用于污水处理节能,曝气系统进行阶段曝气,溶解氧存在浓度梯度,既减少了能耗,又可以改善处理效果,减少污泥量。生物膜法处理工艺采用厌氧处理可以明显降低能量的消耗。5.二次沉淀池二次沉淀池中对排泥设备的研究和排泥方式的改善是降低能耗的有效方法。6.污泥处理污泥处理系统节能研究主要集中于污泥处理的能量回收。从污水污泥有机污染物中回收能量用于处理过程早在上世纪初就已投入实践,但能源危机之前一直不受重视。目前有两种回收途径:一是污泥厌氧消化气利用,一是污泥焚烧热的利用。消化气性质稳定、易于贮存,它可通过内燃机或燃料电池转化为机械能或电能,废热还可回收于消化污泥加热。因此利用消化气能解决污水厂不同程度的能量自给问题。林荣忱等人比较了沼气发电机和燃料电池两种利用形式,认为燃料电池能量利用率高,具有很好的发展前途。对消化气的最大化利用是提高能效的主要方式。沼气发电机组并网发电的研究和应用在国内已有应用实例,是大型污水处理厂的沼气综合利用的可行途径。另外一种能量回收方式是将城市固体废物焚烧场建在污水处理厂旁,将固废与污水污泥一起焚烧,获得的电能用于处理厂的运转。城市污水处理的能耗分析研究与节能技术和手段的发展往往并不同步。由于污水处理能量平衡分析方法研究的欠缺,节能措施的制订和实施常常超前。而多数节能途径和手段常常由处理厂的操作管理人员结合各处理设施实际情况提出,具有经验性和个别性,不一定能适用于其他污水厂甚至是工艺相似的污水厂;另一方面,从广义上说,污水处理学科领域的技术创新、新材料和新设备的使用都蕴涵着节能增效的潜力,因而节能的途径和手段往往是很宽泛的。四.结论污水处理是能源密集(energyintensity)型的综合技术。一段时期以来,能耗大、运行费用高一定程度上阻碍了我国城市污水处理厂的建设,建成的一些处理厂也因能耗原因处于停产和半停产状态。在今后相当长的一段时期内,能耗问题将成为城市污水处理的瓶颈。能否解决耗污水厂的能耗问题,合理进行能源分配,已经成为决定污水处理厂运行效益好坏的关键因素。能耗是否较低,也是未来新的污水处理厂可行性分析的决定性因素,开发能效较高的污水处理技术,合理设计及运行污水处理厂,必将是未来污水处理厂设计和运行的必由之路。参考文献:1.《污水处理能耗与能效》[美]W.F.OWEN,章北平、车武译,金儒霖校,能源出版社2.《排水工程》张自杰主编,第四版,中国建筑工业出版社3.城市水工程概论》李圭白、蒋展鹏、范瑾初、龙腾锐主编,中国建筑工业出版社4.《中国给水排水》杂志5.《给水排水》杂志6.中华环保互联网7.给排水在线网站
⑵ 污水处理厂处理污水的流程是哪些
现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。
一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。
三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂率法,活性炭吸附法,离子交换法和电渗分析法等。
整个过程为通过粗格删的原污水经过污水提升泵提升后,经过格删或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。
二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。
以上是污水处理厂处理工艺的基本流程,流程图见下页图一。
二.各个处理构筑物的能耗分析
1.污水提升泵房
进入污水处理厂的污水经过粗格删进入污水提升泵房,之后被污水泵提升至沉砂池的前池。水泵运行要消耗大量的能量,占污水厂运行总能耗相当大的比例,这与污水流量和要提升的扬程有关。
2.沉砂池
沉砂池的功能是去除比重较大的无机颗粒。沉砂池一般设于泵站前、倒虹管前,以便减轻无机颗粒对水泵、管道的磨损;也可设于初沉池前,以减轻沉淀池负荷及改善污泥处理构筑物的处理条件。常用的沉砂池有平流沉砂池、曝气沉砂池、多尔沉砂池和钟式沉砂池。 沉砂池中需要能量供应的主要是砂水分离器和吸砂机,以及曝气沉砂池的曝气系统,多尔沉砂池和钟式沉砂池的动力系统。
3.初次沉淀池
初次沉淀池是一级污水处理厂的主题处理构筑物,或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面。处理的对象是SS和部分BOD5,可改善生物处理构筑物的运行条件并降低其BOD5负荷。初沉池包括平流沉淀池,辐流沉淀池和竖流沉淀池。
初沉池的主要能耗设备是排泥装置,比如链带式刮泥机,刮泥撇渣机,吸泥泵等,但由于排泥周期的影响,初沉池的能耗是比较低的。
图一城市污水处理典型流程
4.生物处理构筑物
污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例,它和污泥处理的单元过程耗能量之和占污水厂直接能耗的60%以上。活性污泥法的曝气系统的曝气要消耗大量的电能,其基本上是联系运行的,且功率较大,否则达不到较好的曝气效果,处理效果也不好。氧化沟处理工艺安装的曝气机也是能耗很大的设备。生物膜法处理设备和活性污泥法相比能耗较低,但目前应用较少,是以后需要大力推广的处理工艺。
5.二次沉淀池
二次沉淀池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上,能耗比较低。
6.污泥处理
污泥处理工艺中的浓缩池,污泥脱水,干燥都要消耗大量的电能,污泥处理单元的能量消耗是相当大的,这些设备的电耗功率都很大。
三.针对各个处理构筑物的节能途径
1.污水提升泵房
污水提升泵房要节省能耗,主要是考虑污水提升泵如何进行电能节约,正确科学的选泵,让水泵工作在高效段是有效的手段,合理利用地形,减少污水的提升高度来降低水泵轴功率N也是有效的办法,定期对水泵进行维护,减少摩擦也可以降低电耗。
2.沉砂池
采用平流沉砂,避免采用需要动力设备的沉砂池,如平流沉砂池。采用重力排砂,避免使用机械排砂,这些措施都可大大节省能耗。
3.初次沉淀池
初次沉淀池的能耗较低,主要能量消耗在排泥设备上,采用静水压力法无疑会明显降低能量的消耗。
4.生物处理构筑物
国外的学者通过能耗和费用效益分析比较了生物处理工艺流程,他们认为处理设施大部分的能量消耗是发生在电机这类单一的设备上,因而节能应从提高全厂功率因数、选择高效机电设备及减少高峰用电要求等方面入手。他们提出的节能措施既包括改善电机的电气性能,也包括解决运转的工艺问题,还包括污水厂产物中的能量回收(Energy Recovery)。
曝气系统的能耗相当大,对曝气系统能耗能效的研究总是涉及到曝气设备的改造和革新。新型的曝气设备虽然层出不穷,但目前仍然可划分为2类:第1种是采用淹没式的多孔扩散头或空气喷嘴产生空气泡将氧气传递进水溶液的方法,第2种是采用机械方法搅动污水促使大气中的氧溶于水的方法。微孔曝气,曝气扩散头的布局和曝气系统的调节这些都是节能的有效措施。在传统活性污泥处理厂曝气池中辟出前端厌氧区,用淹没式搅拌器混合的节能、生物除磷方案。这一简单的改造可以节省近20%的曝气能耗,如果算上混合用能,节能也达到12%。自动控制系统的应用于污水处理节能,曝气系统进行阶段曝气,溶解氧存在浓度梯度,既减少了能耗,又可以改善处理效果,减少污泥量。
生物膜法处理工艺采用厌氧处理可以明显降低能量的消耗。
5.二次沉淀池
二次沉淀池中对排泥设备的研究和排泥方式的改善是降低能耗的有效方法。
6.污泥处理
污泥处理系统节能研究主要集中于污泥处理的能量回收。从污水污泥有机污染物中回收能量用于处理过程早在上世纪初就已投入实践,但能源危机之前一直不受重视。目前有两种回收途径:一是污泥厌氧消化气利用,一是污泥焚烧热的利用。
消化气性质稳定、易于贮存,它可通过内燃机或燃料电池转化为机械能或电能,废热还可回收于消化污泥加热。因此利用消化气能解决污水厂不同程度的能量自给问题。林荣忱等人比较了沼气发电机和燃料电池两种利用形式,认为燃料电池能量利用率高,具有很好的发展前途。对消化气的最大化利用是提高能效的主要方式。沼气发电机组并网发电的研究和应用在国内已有应用实例,是大型污水处理厂的沼气综合利用的可行途径。
另外一种能量回收方式是将城市固体废物焚烧场建在污水处理厂旁,将固废与污水污泥一起焚烧,获得的电能用于处理厂的运转。
城市污水处理的能耗分析研究与节能技术和手段的发展往往并不同步。由于污水处理能量平衡分析方法研究的欠缺,节能措施的制订和实施常常超前。而多数节能途径和手段常常由处理厂的操作管理人员结合各处理设施实际情况提出,具有经验性和个别性,不一定能适用于其他污水厂甚至是工艺相似的污水厂;另一方面,从广义上说,污水处理学科领域的技术创新、新材料和新设备的使用都蕴涵着节能增效的潜力,因而节能的途径和手段往往是很宽泛的。
四.结论
污水处理是能源密集(energy intensity)型的综合技术。一段时期以来,能耗大、运行费用高一定程度上阻碍了我国城市污水处理厂的建设,建成的一些处理厂也因能耗原因处于停产和半停产状态。在今后相当长的一段时期内,能耗问题将成为城市污水处理的瓶颈。能否解决耗污水厂的能耗问题,合理进行能源分配,已经成为决定污水处理厂运行效益好坏的关键因素。能耗是否较低,也是未来新的污水处理厂可行性分析的决定性因素,开发能效较高的污水处理技术,合理设计及运行污水处理厂,必将是未来污水处理厂设计和运行的必由之路。
参考文献:
1.《污水处理能耗与能效》[美]W.F.OWEN,章北平、车武译,金儒霖校,能源出版社
2.《排水工程》张自杰主编,第四版,中国建筑工业出版社
3.城市水工程概论》李圭白、蒋展鹏、范瑾初、龙腾锐主编,中国建筑工业出版社
4.《中国给水排水》杂志
5.《给水排水》杂志
6.中华环保互联网
7.给排水在线网站
⑶ 龙腾锐的专家领域
市政供水工艺技术、饮用水水质安全技术与管理、城镇污水处理工艺技术、污专水深度处理与再属生利用工艺技术、排水系统及管网技术与管理、污泥处理处置技术、化学工业废水、制药废水、规划、环境监测与评价、泵、节水技术与管理、水业政策、水业市场、金属制造业废水、管理
⑷ 陈垚的科研项目
一、主持项目
1、国家科技支撑计划课题子题(2012BAC20B12-13)——重庆市碳排放交易现状分析与模式设计
2、重庆市教委科学技术研究项目(KJ110403)——高盐好氧颗粒污泥处理榨菜废水研究
3、省部共建水利水运工程教育部重点实验室开放基金项目(SLK2010B09)——含盐废水尾水排放模式对近水域盐升分布及水质影响的模拟研究
4、重庆赛迪冶炼装备系统集成工程技术研究中心有限公司技术委托开发项目——高效絮凝澄清池实验研究
5、重庆交通大学人才引进基金项目——好氧磷酸盐还原除磷机理研究
6、重庆交通大学实验室开放基金项目(SYK201007)——生物接触氧化法处理城市污水效能探讨
7、重庆交通大学专业建设专项计划——“给排水科学与工程”新专业建设项目
8、重庆交通大学课程改革项目《给水排水管网系统》
9、重庆交通大学校级教材项目《水处理新工艺与新技术》
二、参与项目
1、国家科技支撑项目(2011BAB09B0103)——三峡水库常年回水区航运工程建设关键技术研究(任务四:三峡水库绿色航道施工技术研究)
2、中央财政支持地方高校发展专项资金项目——环境水利与城市水务教学实验平台
3、国家水体污染控制与治理重大科技专项(2008ZX07315-004)——三峡库区食品工业园区废水处理关键技术研究与示范
4、国家水体污染控制与治理重大科技专项(2008ZX07315-005)——三峡库区山地小城镇水污染控制关键技术研究与示范
5、重庆市市政管理委员会科研项目——重庆市城市污水处理厂污泥处理处置专项规划
6、广西环境工程与保护评价重点实验室开放基金项目(桂科能,0704K031)——AMBBR-活性污泥组合工艺对低碳源城市生活污水的脱氮研究
7、重庆市高等教育教学改革研究项目(103222)——高等学校理工专业双语教学模式研究与实践
8、重庆市高等教育教学改革研究项目(133031)——高等学校双语教学质量保障体系构建与实践研究
三、教材等编制
1、参与《重庆市城市污水处理行业发展规划》编制(第8完成人)
2、参与《全国勘察设计注册公用设备工程师给水排水专业考试复习教材(第三版)》排水工程分册第16章(污水的自然生物处理)、17章(污水厂污泥的处理)及18章(城镇污水处理厂的设计)中部分章节内容的编制工作
3、参编高等学校“十二五”规划教材——给排水科学与工程专业应用与实践丛书《给水排水管网》
四、发表论文
1、陈垚,李春龙,雷晓玲,等. 含盐废水尾水排放对近水域水质影响的模拟. 江苏农业科学,2014,42(8):313-345
2、CHEN Yao, LI Li, YANG Bailu, LI Chunlong. Study on the Simulation Research of Effect of Salinity Wastewater Discharging Ways on the Range of Salt Content Rise nearby the Outfall. Advanced Materials Research, 2013, 777: 440-443(EI检索号:20134416915690)
3、陈垚,杨白露,喻钢,等. 高盐好氧颗粒污泥形成过程及机制研究. 中国给水排水,2013,29(23):8-13
4、陈垚,周健,甘春娟,等. 超高盐厌氧生物处理系统快速启动及其除污特性. 水处理技术,2011,37(6):90-94
5、陈垚,龙腾锐,周健,李晓品. 底物条件对好氧磷酸盐还原除磷效能的影响. 中国给水排水,2010,26(9):29-32
6、陈垚,龙腾锐,周健,刘俊,甘春娟. 超高盐高磷废水磷酸盐还原系统构建过程中磷系统转化分析研究. 环境科学,2009,30(9):2592-2597
7、陈垚,曾朝银,龙腾锐,李晓品. 榨菜综合废水好氧生物处理工艺的选择试验. 中国给水排水,2009,25(15):21-24
8、陈垚,翟俊,龙腾锐. 折流式曝气生物滤池处理小城镇污水的工艺设计. 中国给水排水,2007,23(8):38-41
9、陈垚,周健,甘春娟,栗静静. 初始pH对好氧磷酸盐还原进程的影响研究. 环境工程学报,2011,5(11):2428-2432
10、陈垚,周健,何强,栗静静. 环境因子对好氧磷酸盐还原除磷效能的影响. 中国给水排水,2011,27(23):21-25
11、陈垚,周健,甘春娟,栗静静. DO及曝气方式对磷酸盐还原除磷工艺的影响. 工业水处理,2011,31(10):31-34
12、Chen Yao, Gan Chun-juan and Zhou Jian. Effect of Environment Factors on Phosphorus Removal Efficiency of Phosphate Rection System. Advanced Materials Research, 2011,Vol 255 - 260:2797-2801
13、Chen Yao, Gan Chun-juan. Effect of Substrate Condition on Phosphorus Removal Efficiency of Phosphate Rection System. The 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE2011), Wuhan, 2011,Vol 4:3698-3701.
14、Chen Yao, Zhou Jian, Long Teng-rui, Li Zhi-gan. Transformation of Phosphorus Forms in the Construction Process of Phosphate Rection System of Hypersaline and High-phosphorus Wastewater. 2009 International Conference on Energy and Environment Technology (ICEET09), Guilin, 2009,Vol 2:892-896.
15、陈垚,雷晓玲,秦宇. 高校理工专业双语教学的思考. 高等建筑教育,2012,21(1):69-71
16、喻钢,陈垚(通讯作者),李春龙. 含盐废水尾水排放对近水域盐升分布影响的数值模拟研究. 安徽农业科学,2013,41(19):8276-8278,8339
17、龙腾锐,陈垚,周健,刘俊. 硝酸盐对磷酸盐还原系统除磷效能的影响研究. 土木建筑与环境工程. 2009,31(5):127-131
18、Long Teng-rui, Chen Yao, Zhou Jian. Dephosphorization Mechanism of Prolonged Sludge Age SBBR Treating Saline and High-phosphorus Wastewater. Journal of Central South University of Technology,2009,16(s1):363-367
19、雷晓玲,陈垚. 高等学校理工专业双语教学改进措施探讨. 重庆教育学院学报,2011,24(4):22-26
20、雷晓玲,黄芳,陈垚,丁社光. 活性炭对典型染料的吸附性能研究. 工业水处理,2013,33(5):56-60
21、周健,刘俊,陈垚,龙腾锐,甘春娟,李晓品. ASBBR处理榨菜废水的生物还原除磷效能研究. 中国给水排水,2009,25(19):8-11
22、翟俊,何强,陈垚,肖海文. 重庆奉节公平镇污水处理示范项目工艺设计. 给水排水,2007,33(8):23-26
23、周健,梁东,陈垚,刘轶. SBBR反应器处理榨菜废水生物化学协同除磷效能试验研究. 工业水处理,2010,30(3):56-58
24、周健,陈博,陈垚,龙腾锐,胡斌. 铁炭微电解工艺对高硝态氮制药废水的脱氮效能. 中国给水排水,2011,27(9):78-80
25、高祥,龙腾锐,陈垚,王晓丹. 浅谈三峡库区山地小城镇排水体制的选择. 三峡环境与生态,2010,32(6):21-23,38
26、Zhou Jian, Duan Song-hua, Chen Yao, Hu Bin. Nitrogen Removal Efficiency of Iron-Carbon Micro-electrolysis System Treating High Nitrate Nitrogen Organic Pharmaceutical Wastewater. Journal of Central South University of Technology,2009,16(s1):368-373
27、柴宏祥,李晓品,周健,陈垚,龙腾锐. ASBBR—二级SBBR—化学除磷组合工艺处理榨菜腌制废水. 环境工程学报,2010,4(4):785-788.
28、周健,齐建华,何强,陈垚,胡斌. 铁炭微电解/生物组合工艺处理制药废水研究. 中国给水排水,2010,26(21):109-112
29、Zhou Jian, Liu Jun, Jiang Wenchao, Chen Yao, Li Xiaopin. Phosphorus Removal through Phosphate Bio-rection of an Anaerobic Squencing Batch Reactor in Treating Preserved Pickle Wastewater. 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009), Beijing, 2009, 1-4.
30、周健,窦艳艳,何强,栗静静,陈垚,钟于涛. 多级生物膜反应器分段进水方式对脱氮效能影响研究. 水处理技术,2010,36(1)106-109
五、申请及授权专利
. 申请专利6项,其中授权发明专利3项。
1、第三持证人,发明专利:一种处理高浓度有机废水的高效组合式厌氧生物处理系统.
2、第四持证人,发明专利:一体化生物生态协同污水处理方法及反应器.
3、第六持证人,发明专利:一种间歇/连续流交替运行的污水处理反应器.
4、第二申请人,发明专利:高盐废水生物处理系统的快速构建技术.
5、第四申请人,实用新型专利:一种一体化生物生态协同污水处理反应器.
6、第五申请人,实用新型专利:一体化生物膜/物化协同污水处理设备.
⑸ 我是一名普通二表院校的大三学生想考研·请问大连理工的环境工程怎么样
当然不错啦,如何选择院校呢要看你自己的成绩如何,还有你想去那个城市,综合这两点,选择一下,大工呢分数不低,自主划线,但是的确是个好学校,如果你成绩够好,可以试一试,大连的其他学校,比如大连海事,大连海洋之类的就会好考一点了,下面是大工的环境工程初试内容和用书,数外政国家统考,专业课自主命题,一共有四个选择,任选一个,也就是在880,882,883,884里任选一个,明白了吗,还有问题可以追问
环境工程(083002) 101思想政治理论 国家统一命题。
环境工程(083002) 201英语一 国家统一命题。
环境工程(083002) 203日语 国家统一命题。
环境工程(083002) 302数学二 国家统一命题。
环境工程(083002) 880生物化学及生物化学实验 《生物化学》,编者:王镜岩等,高等教育出版社,第三版 《生物化学实验原理和方法》,编者:陈雅蕙等,北京大学出版社,第二版
环境工程(083002) 882环境科学概论 《环境科学概论》,编者:杨志峰、刘静玲,高等教育出版社《环境化学》,编者:陈景文,全燮,大连理工大学出版社,普通高等教育“十一五”国家级规划教材《环境管理学》,编者:叶文虎,高等教育出版社,面向21世纪课程教材
环境工程(083002) 883环境工程原理 《环境工程微生物学》,编者:周群英、高廷耀,高教出版社(第二版) 《水污染控制工程》,上下册,编者:高廷耀,高教出版社(第二版) 《环境工程学》,编者:蒋展鹏,高教出版社(第二版); 《大气污染控制工程》,编者:郝吉明、马广大,高教出版社(第二版)
环境工程(083002) 884物理化学及物理化学实验 《物理化学简明教程》(第二版),“十一五”规划教材,傅玉普 王新平主编,大连理工大学出版社《物理化学学习指导》(第三版),编者:傅玉普等.大连理工大学出版社《物理化学考研重点热点导引与综合能力训练》(第三版),编者:傅玉普等.大连理工大学出版社《基础化学实验》(第二版),编者:孟长功、辛剑,高等教育出版社
⑹ 工业制聚合铝怎么过滤
我国自来水厂技术工艺应用现状及发展趋势探讨
原作者: 陈 琼 龙腾锐 姜文超 唐 然来 源:《中国建设信息》水工业市场杂志 时间:2006-3-31
陈 琼 龙腾锐 姜文超 唐 然
(重庆大学三峡库区生态环境教育部重点实验室,重庆 400045)
摘要:我国自来水厂技术工艺经过长期的发展,积累了不少宝贵经验。本文概括地总结了其应用现状,并针对各技术工艺在实际应用中所遇到的问题对其发展趋势提出展望。
关键词:自来水厂,水厂现状,发展趋势
1. 技术工艺现状
我国自来水厂技术工艺经过长期的发展,积累了不少宝贵经验。目前,我国城市供水处理技术仍以由混凝、沉淀、过滤和消毒四个单元处理过程组成的常规供水处理工艺为主,其理论主要是建立在传统的以粘土胶体微粒和致病细菌为主要去除对象的基础上,在我国得到了较长时期和较大范围的应用一直广泛应用于我国的供水处理。经过几十年的发展,我国已发展了多种适合各地情况的不同形式和性能的处理构筑物,如快速混合、水力或机械搅拌的絮凝设施;带有不同斜板或斜管的沉淀、澄清以及气浮构筑物;带有气水反冲洗、均质滤料、多层滤料的过滤设施等。目前常用的混凝剂主要有铝盐和铁盐等[1]。
随着我国各地区水体污染状况的发展,源水水质不断恶化,直接影响到社会生产以及人民生活。微污染水源水,主要含有微量有机物、农药、氨氮等有害污染物,用常规的净化工艺很难去除掉。尤其是微量有机物的去除,引起人们的高度重视。国家对微污染水源的预处理和水的深度处理进行了广泛的研究与开发[2][3]。
目前常见的预处理方法有氧化法(包括化学氧化法:氯气预氧化、高锰酸钾预氧化、臭氧预处理等以及生物氧化法:生物滤池、生物塔滤、生物接触氧化等)和吸附法:粉末活性炭吸附等[4] [5]。
深度处理通常是指在常规处理工艺以后,采用适当的处理方法,将常规处理工艺不能有效去除的污染物或消毒副产物的前体物加以去除,提高和保证饮用水质。目前应用较广泛的深度处理技术有:活性炭吸附、臭氧氧化、生物活性碳和膜技术等[6]。
此外,各种针对特殊水源的处理技术工艺也得到了广泛应用,如采用气浮或者生物预处理+活性碳深度处理除藻,接触氧化过滤除铁除锰,活性氧化铝吸附法、混凝沉淀法或电渗析法除氟等[7]-[11]。
在供水安全消毒技术方面,液氯消毒仍然是主流。70年代开始发现氯消毒会产生具有致癌作用的卤代甲烷类化合物。根据三卤形成的规律,研究出多种去除方法[12]。
近年来,水厂自动化程度越来越高并趋普及,供水行业特别在新建水厂中已大量采用先进的仪器仪表、自动化装置、各种新型专用器材与设备等。水厂运行的调度管理以及生产过程的监控系统和自动化技术,已在大中型水厂广泛采用,小型水厂也已逐步推广 [13]-[16]。
2. 技术工艺发展趋势
(1)强化常规处理
目前我国在各类聚合铝(铁)絮凝剂的开发应用方面,已取得很大成效,但混凝技术的综合水平与国外先进水平仍有差距。由于我国水资源缺乏和水质污染,增大了水混凝处理的难度和运行成本。积极研究开发新型、高效、绿色水处理药剂和强化固液分离设施已显得越来越重要[17][18]。高品质混凝剂和助凝剂的开发与利用是提高出水水质的一个重要方面,它们的合理投加也是自来水厂高效、低耗的一个关键因素[19] [20]。
(2)生物预处理工艺
我国从20世纪70年代开始研究利用微生物酶催化氧化对有机物的分解作用,以去除原水中可生化降解物质和氨氮,现已取得很大发展。针对我国原水中可降解有机物高的特点,生物预处理工艺已在深圳、宁波、上海等城市中得到应用,对降低原水中氨氮等可降解有机物和提高出厂水水质起着重要作用。面对目前日益恶化的水资源环境,如何利用生物的氧化分解作用结合传统的处理工艺,对各种不同的水源进行处理,还有待进一步研究,以期在实用化的基础上不断提高其处理效果[19]。
(3)深度处理工艺
关于在常规处理的基础上,进一步采用臭氧氧化、活性炭吸附的深度处理技术,国内外已有较多研究,国内也有不少城市的水厂采用该工艺。
2005年国家建设部颁布了最新的供水水质标准,即《城市供水水质标准》(CJ/T 206—2005),检测项目由目前规定的35项增加到88项,其中浊度标准必须小于1NTU[21]。按照该标准,许多城市的原水即使通过加强常规处理,甚至增设生物预处理设施,也还不能达到上述要求,因此有理由相信臭氧活性炭深度处理的广泛应用将是未来的发展趋势。
该工艺处理效果明显,但基建投资与运行费用相对较高,如何合理运用还须进行进一步研究[6]。
(4)膜处理技术
膜滤法是新兴高效分离技术,系用天然或人工合成的高分子薄膜作介质,以附加能量为推动力,对双组分或多组分溶液进行过滤分离的处理方法。
一般说,对于浊度和细菌可用微孔精滤膜去除,例如大同市水司曾用中孔纤维膜微滤设备对水库微污染水进行了试验,出水浊度0.1 NTU,细菌总数趋于0等;对于病毒、天然有机物,可用超滤膜去除;纳滤膜可去除水中的钙、镁离子、消毒副产物、农药、表面活性剂等;反渗透膜可去除更小的无机离子与有机物等[12] [22][23]。
过去膜处理在净水处理上主要用于工业制水,近年来随着膜工艺的发展,其成本有所降低,已逐步渗透到生活饮用水领域。目前国内在小范围的优质水供应系统及瓶装水处理系统中已普遍采用了膜处理技术。
与常规水处理技术相比,膜处理技术能去除水中尺度更小的物质。通过膜处理还可以去除贾第氏鞭毛虫孢囊和病毒,减少常规消毒的副产物生成,而且可以不投药剂,避免了化学药剂的副作用。
虽然目前城市水厂普遍采用膜处理的条件尚不成熟,但膜处理技术的发展前景十分光明,随着膜制造技术的发展和成本的不断降低,今后该技术将得到更加广泛的应用[19]。
(5)富营养化原水的除藻技术
近些年来,水库及天然湖泊水被大量用作城市的供水水源,这些水源由于富营养化而在夏季大量滋生藻类等。因此,除藻已成为我国水处理的一个重要课题[12]。
(6)安全消毒
由于技术和经济条件的限制,液氯是目前国内水厂使用最多的消毒剂,也有少数水厂采用二氧化氯或次氯酸钠作消毒剂。面对复杂的原水水质,采用更安全的消毒措施,选择即经济又安全的新型消毒剂以及寻找合理的投加方式都是未来发展的方向[24]。
(7)排泥水处置
净水厂生产废水(沉淀池或澄清池的排泥水以及滤池的反冲洗水)约占城市用水量的4%~7%[25]。虽然水厂排泥水中无机成分占绝大多数,但其悬浮物浓度很高,如果将这部分水直接排入水体,不仅是对水资源的一种浪费,还会对受纳水体造成污染。
研究发现,以铝盐作为混凝剂的污泥中氢氧化铝浓度的增加会导致底栖生物死亡率随之升高;而污泥的沉积作用则会造成水体中某些鱼类食物短缺,影响鱼卵的成活率[26] [27]。此外,给水污泥中还存在许多其他的污染物,如有机物、重金属离子、砷、氟、硝酸根和放射性物质等,也会对水环境质量产生影响,造成江河上、下游及不同区域之间形成“先排出,后吸入”的恶性循环[28]。
目前国内只有少数水厂(如上海闵行水厂、深圳梅林水厂、杭州萧山自来水公司南片水厂等)对排泥水进行处理,取得了一定的效果[29] [30]。随着环境保护力度的日益加大,自来水厂实施排泥水减量化、无害化和资源化处置势在必行。但由于缺乏实践经验,对不同水源、不同水处理工艺所产生的排泥水的处理工艺、脱水方式以及预处理药剂的合理选取还有待进一步研究。
(8)小城镇适用工艺
改革开放以来,我国城镇化进程加快,尤其是近年来在“小城镇,大战略”思想的指导下,我国小城镇的建设和发展更快。目前,我国小城镇建设己经步入一个充满活力的全新时期[31]。总体而言,我国小城镇供水基础设施已具备一定基础,但发展不平衡,供水基础设施整体现状水平不高。到目前为止,关于小城镇给水处理的经济适用性技术工艺方面的研究工作还很欠缺。
应根据小城镇工程资金不足、技术管理水平不高、经济物质力量欠缺等特点,因地制宜地研究其处理工艺,多开发一些土建工程量少,投资小,占地省,操作管理方便的实用技术工艺[32]。
(9)水质检测
面对日益复杂的水源水质,水质检测技术应能及时地反映出水中某些微量成分对用户的危害。如何使水厂的水质检测系统能够快速、准确、方便的检测到它们的存在,是今后一项艰巨的任务[3]。
(10)水质稳定
由于水厂(特别是采用地表水作为水源的水厂)的处理效果容易受到原水水质及处理环境等因素的变化影响,出厂水水质都会产生或大或小的波动。随着对生活饮用水水质要求的全面提高,如何将出厂水水质变化稳定在理想的范围内也是今后需要认真研究的净水技术之一[19]。
3. 结论
目前我国自来水厂技术工艺的使用情况已形成以常规处理工艺为主体,预处理、深度处理工艺作补充的局面。随着科学技术的不断发展和水质标准的逐步提高,一些安全性高、能耗省、药耗低、占地少、操作管理简单的新处理技术工艺将是未来发展的方向。
参考文献:
[1] 程伟.给水厂净水工艺的发展及工艺比较.沿海企业与科技,2005;67(9):62~63
[2] 黄涛.微污染水处理新工艺.贵州化工,2005;30(5):25~29
[3] 杨晓松,刘峰彪,罗泰伟.生活用水净化技术的现状和发展趋势.矿冶,2001;10(2):85~89
[4] 丁纪英,王波,张呈利.粉末活性炭在水处理中的应用.山东水利,2005, 4:32~33
[5] 李树苑,杨文进,张怀宇,张小平.微污染水库水处理工艺研究.给水排水,2005;31(8):26~29
[6] 李景芳.我国饮用水深度处理技术现状及发展趋势.齐鲁石油化工,2005,2005;33(3):218~220
[7] 刘洋,张声,张晓健.溶气气浮工艺处理密云水库水的研究.工业用水与废水,2004;35(6):17~20
[8] 彭海清,谭章荣,高乃云,孟长再.给水处理中藻类的去除.中国给水排水,2002;18(2):29~31
[9] 梁恒,李圭白,李星,韩宏大.不同水处理工艺流程对除藻效果的影响.中国给水排水,2005;21(3):5~7
[10] 张杰,李冬,陈立学,杨宏.地下水除铁除锰机理与技术的变革.自然科学进展,2005;15(4):433~438
[11] 刘国平,王志军,王欢.接触氧化法除铁和除锰效果的影响因素研究.黑龙江水专学报,2005;32(1):77~79
[12] 崔玉川,傅涛.我国城市给水发展现状与特点.中国给水排水,1999;15(2):52~54
[13] 刘晓松.中国水工业发展的现状与对策.中国给水排水,1995;11(2):19~24
[14] 曹利人.供水工程自动化控制系统设计.测控技术,2005;24(10):36~38
[15] 江圣辉.中小型PLC在大型自来水厂的应用.自动化仪表2005;26(6):54~56
[16] 文黎萍.水厂供水自动控制系统及设计.石河子科技,2005, 3.:6~7
[17] 肖锦,汪晓军,周勤,朱云.混凝技术的新进展.2003全国水处理技术研讨会暨第23届年会论文集
[18] 纪传伟.合理投药,提高水质,降低药耗.城镇饮用水安全保障技术研讨会论文集,2004.8:295~297
[19] 周云,何义亮.微污染水源净水技术及工程实例.化学工业出版社,2003,No.8.
[20] 缪佳,赫俊国等.给水处理常规混凝技术的进展.城镇饮用水安全保障技术研讨会论文集,2004.8:266~271
[21] 高娟,李贵宝.最新颁布实施的《城市供水水质标准》的特点.中国水利,2005,15:51~52
[22] 俞三传,高从堦,张慧.纳滤膜技术和微污染水处理.水处理技术,2005;31.(9):6~9
[23] 于德奎,朱柏华,韩树清.降低饮水致突变性效果的研究.中国给水排水,1994;10.(1):29~32
[24] 王志飞.我国城市供水系统消毒的现状与发展.城市公用事业,2003;17.(3):27~29
[25] 费霞丽.原水浊度对水厂生产废水回用影响的研究.哈尔滨商业大学学报(自然科学版),2005,21(2):162~165
[26] Lamb D S,Gary Bailey.Acute and Chronic Effects of Alum to Midge Larva.Bulletin Env Contam Toxicology,1981,25(10):27-59
[27] EPA,ASCE. Management of Water Treatment Plant Resials.[AWWA].Washington DC:EPA,1996
[28] 许嘉炯等.关于自来水厂生产废水的回用.净水技术,2003,2(1):32-34
[29] 郑小明等.排泥水处理技术在闵行一水厂的应用.中国给水排水,2003,29(6) :14-17
[30] 刘小东等.梅林水厂污泥处理系统工艺优化探讨.中国给水排水,2003,29(6):11-14
[31] 李国青.论区域供水与小城镇供水事业发展趋势.安徽建筑,2004, 5.:128~129
[32] 何志军.县镇水厂设计体会.中国给水排水,1999,15(2):34-35
上一篇:已经没有了 下一篇:·我国给水深度处理应用发展近况与存在的问题
□- 相关文章 □- 本周热门文章
1.我国给水深度处理应用发展近况与存在的问题
2.我国自来水厂技术工艺应用现状及发展趋势探讨
1. 潍坊市副市长黄滩连
2. 不锈钢二次渣处理厂房配套项目
3. 2005中国城市污水处理厂建设运营情...
4. 大唐韩城二电厂(二期)项目
5. 上海举办Pollutec China...
6. 浙江大唐乌沙山电厂新建工程项目
7. 滨海城市水资源保护与管理研讨会
⑺ 急急急!!!污水中氮和磷对环境有哪些危害分析生物脱氮除磷过程中不同阶段微生物作用的特点
第1 卷第1 期
2 0 0 0 年2 月
环境污染治理技术与设备
Techniques and Equipment for Environmental Pollution Control
Vol . 1 , No . 1
Feb . , 2 0 0 0
生物脱氮除磷工艺中的
微生物及其相互关系
X
郭劲松 黄天寅 龙腾锐
(重庆建筑大学城市建设学院,重庆400045)
摘 要
本文着重对近年来脱氮除磷微生物学方面的研究进展进行了综述,分析了生物脱氮除磷
反应器中各类功能微生物间的相互作用关系,营养物代谢机理和对处理效率的贡献,讨论了
脱氮除磷生物学应深入研究的一些问题。
关键词:废水处理 脱氮除磷 微生物
一、前 言
生物方法脱氮除磷由于其处理效率高、运行成本较低、污泥相对易处理,受到广泛重
视。目前已经发展了诸如A/ O、A2/ O、Bardenpho 、UCT、VIP、SBR 及氧化沟等较为成功
的脱氮除磷工艺。在生物脱氮除磷过程中,微生物的种类、数量和代谢活性以及它们之间
相互作用关系所形成的微生态系统的特征,直接影响着废水处理的效率。因此,分析研究
脱氮除磷微生物的种类及其相互作用的关系,对于生物脱氮除磷工艺的优化控制管理和
开发新工艺将会起到重要作用。
二、生物脱氮除磷活性污泥微生物组成
11 脱氮微生物
一般生物废水处理反应器内的微生物都能降解蛋白质、多肽、氨基酸、尿素等含氮化
合物以获得生命活动所需能量和其它小分子物质,并生成氨氮,这个过程称为氨化[1 ] 。
蛋白质的分解过程如下[2 ] :
蛋白质
蛋白酶
蛋白胨
蛋白酶
多肽
肽酶
氨基酸
不同微生物所具有的蛋白酶也不尽相同,如枯草杆菌有明胶酶和酪蛋白酶,而大肠杆
菌没有这两种酶,因此不能分解明胶和酪蛋白。污水中能分解蛋白质的微生物种类很多,
特别是假单胞菌属、牙孢菌属中某些种均能产生蛋白酶。真菌中的曲霉、毛霉和木霉也能
X 本研究得到国家自然科学基金资助(59838300)
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
产生蛋白酶分解蛋白质。
氨基酸被吸收进入微生物细胞后,有的转化为另一种氨基酸用于合成菌体蛋白质或
某些含氮化合物的合成。而另一部分氨基酸的降解主要通过脱氨基和脱羧基两种方式。
由于微生物类型、氨基酸种类与环境条件不同,脱氨方式也不同,主要有:
a. 氧化脱氮:在有氧条件下好氧微生物将氨基酸氧化成酮基酸和氨。
b. 还原脱氮:在厌氧条件下,专性厌氧菌和兼性厌氧菌将氨基酸还原成饱和脂肪酸和
氨。
c. 水解脱氮和减饱和脱氮:不同氨基酸经此两种方式脱氨生成不同的产物。如大肠
杆菌及变形杆菌水解色氨酸,生成吲哚、丙酮酸及氨;粪链球菌使精氨酸产生瓜氨酸;大肠
杆菌、变形杆菌、枯草杆菌和酵母菌等能将半胱氨酸分解为丙酮酸、氨和硫化氢。
硝化反应是在好氧状态下由亚硝酸菌( Nit rosomonas ) 与硝酸菌( Nit robacter) 共同完
成的。亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和硝酸球菌属等,硝酸菌有硝酸杆
菌、螺菌属和球菌属等,两者都属专性好氧菌。硝化细菌几乎生活在所有污水处理过程
中,它们都是革蓝氏染色阴性,具有强烈的好氧性,不能在酸性条件下生长,由于这两类细
菌不需要有机物作为养料,且是通过氧化无机的氮化合物得到所需的能量,故它们是化能
自养型的细菌[3 ] 。亚硝酸菌和硝酸菌以无机化合物CO2 -
3 、HCO -
3 及CO2 等为碳源,以
NH+
4 及NO -
2 为电子供体,O2 为电子受体,使氨氮氧化并合成新细胞,反应式可表示为:
55NH+
4 + 76O2 + 109HCO-
3
亚硝酸菌
C5H7NO2 + 54NO -
2 + 57H2O + 104H2CO3
400NO -
2 + NH+
4 + 4H2CO3 + HCO -
3 + 195O2
硝酸菌
C5H7NO2 + 3H2O + 400NO -
3
污水生物处理系统中微生物在无氧条件下大多具有反硝化能力,常见的有变形杆菌、
微球菌属、假单胞菌属、芽胞杆菌属等[4 ] 。这些细菌利用硝酸盐中的氧进行呼吸,氧化分
解有机物,将硝态氮还原为N2 或N2O ,其过程如下[5 ] :
NO -
3
硝酸盐还原酶
NO -
2
亚硝酸盐还原酶
NO
氧化氮还原酶
N2O
氧化亚氮还原酶
N2
Payne[6 ] (1973) 系统回顾了具有反硝化能力的废水处理微生物,指出有些类群只具有
硝酸盐还原酶,故只能将NO -
3 还原至NO-
2 ,如无色杆菌属、放线杆菌属、气单胞菌属、琼
脂杆菌属、芽孢杆菌属等;而其它类群由于具有反硝化中的全部酶系,因此能将NO-
3 还
原成N2 ,如微球杆菌属、丙酸杆菌属、螺菌属等。在所有反硝化菌中,有些是专性好氧菌,
有些是兼性厌氧菌。它们在好氧、厌氧或缺氧条件下,即使利用相同的有机基质,但通过
不同的呼吸途径,产生的能量不同,同时细胞产量也不同。此外,少数专性和兼性自养细
菌也能还原硝酸盐,如硫杆菌属细菌能以氢气还原性H2S 等无机物为电子供体,在厌氧
条件下利用NO -
3 作为电子受体来氧化还原性硫。
Kuenen J G等[7 ] (1987) 及Robert son L A. 等[8 ] (1992) 发现,许多异养型硝化细菌能
进行好氧反硝化反应,在产生NO -
3 和NO -
2 的过程中将这些产物还原,这为在同一反应
器中在同一条件下完成生物脱氮提供了可能。Vandegraaf 等[9 ] (1995) 研究发现异养硝
化、好氧反硝化细菌Thiosphaera pantot ropha 能把NH+
4 氧化成NO-
2 ,尔后通过反硝化途
径将NO-
2 (与外源提供的NO -
2 和NO -
3 一起) 还原为N2 ,从而完成脱氮。
1 期 郭劲松等:生物脱氮除磷工艺中的微生物及其相互关系 9
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Mnlder A 等[10 ] (1995) 发现氨确实可以直接作为电子供体进行反硝化反应,并称之
为Anaerobic Ammonium Oxidation (厌氧氨生物氧化) 。Vandegraaf 等[11 ] (1996) 通过研
究,证实了厌氧氨生物氧化是一个微生物过程,在厌氧分批培养中,氨与硝酸盐同时被转
化,仅有微量的亚硝酸盐积累,一旦硝酸盐耗尽,氨转化即停止,但其中起作用的菌属还待
进一步研究。
21 除磷微生物
在有氧条件下摄取磷,在厌氧条件下释放磷原理[12 ,13 ,14 ,15 ] ,目前已被普遍接受。
Fuhs 等[16 ] (1975) 对Baltimore Black River 和Seneca Falls 这两个具有很好除磷效果的污
水厂曝气池中的活性污泥进行检测,发现不动杆菌属( Acinetobacter) 与磷的去除密切相
关。Buchan[17 ] (1983) 研究分析了除磷效果良好的几个试验装置及污水厂的曝气活性污
泥,表明不动杆菌是其中的优势菌种,他认为废水生物除磷过程首先是富集不动杆菌属,
然后通过该菌过量吸收磷达到除磷的目的。此后,Lotter[18 ] (1985) ,Cloete 等[19 ] (1985) ,Bay2
ly 等[20 ] (1989) 和Beacham[21 ] (1990) 也分别在除磷活性污泥中检测到了大量的不动杆菌属。
然而,Brodich 等[22 ] (1983) 发现其生物除磷试验装置活性污泥的微生物中,不动杆菌属是少
数菌属,只占总量的1 %~10 %,而优势菌属为气单胞菌属和假单胞菌属。Hiraishi 等[23 ]
(1989) 比较了生物除磷工艺活性污泥与非除磷工艺活性污泥的微生物组成,发现两者中的
不动杆菌都不占优势,在除磷A/ O 法活性污泥中不动杆菌属只占大约1 %。由此可见不动
杆菌并不是唯一的除磷微生物,还有其它微生物的除磷能力也不容忽视。
Mino[24 ] (1987) 提出内源糖通过EMP 途径(酵解途径) 降解,获得的能量用来吸收醋
酸以合成PHB(聚羟基丁酸盐) ,除磷菌在厌氧段降解内源糖的反应式为:
CH2O + 0. 083C6H10O5 (CH) + 0. 44HPO2 -
3 + 0. 023H2O
1. 33CH1. 5O0. 5 (PHB) + 0. 17CO2 + 0. 44H3PO4
图1 厌氧状态放磷[ 21 ]
在好氧或有NO -
3 存在条件下,因消耗
PHB 及内源碳而建立起的三羧酸循环和呼
吸链产生氢离子,为维持细胞质子动力pmf
的恒定趋向,细胞吸收过量磷,并合成丰富的
Poly - P[25 ] 。除磷菌生化反应模型如图2 所
示。
31 具有反硝化能力的除磷菌(DPB)
在污水生物处理中,生物除磷通常是与
生物脱氮(硝化与反硝化) 工艺一起应用。如
图2 所示,有些除磷菌亦能利用NO -
3 作为电子受体,在吸收磷的同时进行反硝化。许多
研究者[27 ] [28 ,29 ,30 ]在活性污泥系统和实验室培养中发现了具有反硝化能力的除磷菌
(DPB) 。NO -
3 被用来氧化细胞内储存的PHB ,然后以氮分子的形式从废水中排除。这样
引起水体富营养化的氮、磷两大主要元素都被去除。Kuba[31 ] (1994) 发现DPB 除磷能力
与传统A/ O 工艺中普通除磷菌相似,同时也具有建立在内源PHB 和糖类物质(Carbohy2
drate) 基础上类似的生物代谢机理。在特定的条件下,除磷菌具有很强的反硝化能力。
1 0 郭劲松等:生物脱氮除磷工艺中的微生物及其相互关系 1 卷
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Kuba[32 ] (1997) 在Holten 污水处理厂的研究表明,约有50 %的除磷菌参与了反硝化活动。
图2 好氧/ 缺氧状态吸磷[ 26 ]
三、生物脱氮除磷工艺反应器中微生物关系
一般来说[33 ] ,微生物的相互关系有三种可能:第一,一种微生物的生长和代谢对另一
种微生物的生长产生有利影响,或者相互有利,形成有利关系,如生物间的共生和互生;第
二,一种微生物的生长与代谢对另一种微生物的生长产生不利影响,或者相互有害,形成
有害关系,如微生物间的拮抗、竞争、寄生和捕食;第三,两种微生物生活在一起,两者间发
生无关紧要、没有意义的相互影响,表现出彼此对生长和代谢无明显的有利或有害影响,
形成中性关系,如种间共处。
11 有利关系
微生物之间的有利关系可分为互生关系和共生关系。互生关系是微生物间比较松散
的联合,在联合中可以是一方得利,即一方为另一方提供或改善生活条件,或者是双方都
得利。而共生关系是两种微生物紧密地结合在一起,当这种关系高度发展时,就形成特殊
的共同体,在生理上表现出一定的分工,在组织和形态上产生新的结构。
生物脱氮系统中,互生关系主要表现为在化学水平的协作,即微生物间相互提供生长
因子、代谢刺激物或降解对方的代谢抑制物,平衡pH 值,维持适当的氧化还原电位或消
除中间产物的累积。氨化细菌,亚硝酸菌,硝酸菌及反硝化菌之间就表现为互生关系。在
氮素转化过程中,氨化细菌分解有机氮化合物产生氨,为亚硝酸菌创造了必需的生活条
件,但对氨化细菌则无害也无利。亚硝酸菌氧化氨,生成亚硝酸,又为硝酸菌创造了必要
的生活条件。Chai Sung Gee 等[34 ]研究了亚硝化单胞菌属与硝化杆菌在反应器内的相互
作用,运用悬浮生长实验获得的稳态氨和亚硝酸氧化的数据确定了这两种细菌数量的生
长参数,得出结论:硝化杆菌的活性依赖于硝化杆菌对亚硝化单胞菌的数量比例,而亚硝
化单胞菌的活性则不受两者之间数量比例的影响。可以断定这两个种群之间必然存在着
酶促共栖或生物化学的能量转移。反硝化菌则在厌氧条件下将NO-
3 、NO -
2 还原为N2 气
体,从污水的液相中排出,为亚硝化菌和硝化菌解除抑制因子,同时反硝化过程还提高了
反应器内的碱度,部分地补充了硝化过程所消耗的碱度,有利于反应器内pH 值稳定在硝
化菌活性较大的范围内。