污水除硫
㈠ 请教各位老师:如何去除废水中的硫化物
1。对微生物的危害:
1.1硫化物会使促使“硫细菌”繁殖。
1.2主要的硫细菌的性版质为“化能自养好氧”细菌。权
1.3适当的硫细菌对污水处理有利,但污水硫化物含量过高会使得硫细菌过度繁殖,而硫细菌属于丝状菌,其结果是发生污泥膨胀。
2。解决方法:
参考 《GB/T 16489-1996 水质硫化物的测定 亚甲基蓝分光光度法 》。
㈡ 含硫废水处理,急!!!
废水的物理化学复处理工制艺按如下步骤进行:1.加入氢氧化钙/石灰乳,部分重金属以氢氧化物形式析出;2.加入有机硫化物,其余重金属如镉和汞以硫化物形式析出;3.添加絮凝剂,形成易于分离的大粒子固体沉淀物;4.在澄清池/沉淀槽中固液分离,调整分离出废水PH值;5.采用箱式压滤机将所得泥浆脱水。
㈢ 污水处理怎么去除硫酸根离子
向含重金属、硫酸根和氟离子的废水中加中和剂和Ca2+离子,然后用增稠器进行沉淀、分离。向上清液中加含NaOH或Mg(OH)的Ca碱剂,提高其pH,维持SO 2一的溶解,混凝Mg和ca,以氢氧化物形式与残留的氯共沉淀。
硫酸根遇高温会分解为二氧化硫和氧。因此煤在燃烧前都要经过总硫含量测定,以减少有害气体的排放。
【离子结构】硫原子以sp3杂化轨道成键、离子中存在4个σ键,离子为四面体形(不是正四面体,但接近正四面体,所以下面的键长键角也用“约”字,因为四个键的参数都不一样)。
硫酸根是一个硫原子和四个氧原子通过共价键连接形成的四面体结构,硫原子位于四面体的中心位置上,而四个氧原子则位于它的四个顶点,一组氧-硫-氧键的键角约为109°28',而一组氧-硫键的键长约为1.44埃。因硫酸根得到两个电子才形成稳定的结构,因此带负电,且很容易与金属离子或铵根结合,产生离子键而稳定下来。
很多说法称硫酸根是正四面体构型,其实这是错误的。硫酸根中氧原子的孤对电子和硫的3d轨道有d-pπ共轭效应,并非想象中的那么简单(可能需要注意五组d轨道的形状本来就是有差别的)。硫酸根的结构至今在化学界没有定论,无法用一个单一的理论解释离子结构。
㈣ 谁有关于去除污水中硫离子的资料主要是关于活性炭吸附的
活性炭
活性炭
activated carbon
是一种黑色粉状,粒状或丸状的无定形具有多孔的碳,主要成分为碳,还含少量氧、氢、硫、氮、氯。也具有石墨那样的精细结构,只是晶粒较小,层层间不规则堆积。具有较大的表面积(500~1000米2/克),有很强的吸附性能,能在它的表面上吸附气体、液体或胶态固体;对于气体、液体,吸附物质的质量可接近于活性炭本身的质量。其吸附作用具有选择性,非极性物质比极性物质更易于吸附。在同一系列物质中,沸点越高的物质越容易被吸附,压强越大温度越低浓度越大,吸附量越大。反之,减压,升温有利于气体的解吸。常用于气体的吸附、分离和提纯,溶剂的回收,糖液、油脂、甘油、药物的脱色剂,饮用水及冰箱的除臭剂,防毒面具中的滤毒剂,还可用作催化剂或金属盐催化剂的载体。早期生产活性炭的原料为木材、硬果壳或兽骨,后来主要采用煤,经干馏、活化处理后得到活性碳生产方法有:①蒸汽、气体活化法。利用水蒸气或二氧化碳在850~900℃将碳活化。②化学活化法。利用活化剂放出的气体,或用活化剂浸渍原料,在高温处理后都可得到活性炭。
活性炭具有微晶结构,微晶排列完全不规则,晶体中有微孔(半径小于20〔埃〕=10-10米)、过渡孔(半径20~1000)、大孔(半径1000~100000),使它具有很大的内表面,比表面积为500~1700米2/克。这决定了活性炭具有良好的吸附性,可以吸附废水和废气中的金属离子、有害气体、有机污染物、色素等。工业上应用活性炭还要求机械强度大、耐磨性能好,它的结构力求稳定,吸附所需能量小,以有利于再生。活性炭用于油脂、饮料、食品、饮用水的脱色、脱味,气体分离、溶剂回收和空气调节,用作催化剂载体和防毒面具的吸附剂。
㈤ 如何去除污水中的硫化物
1,运用低浓度的硫就用硫酸亚铁就行。
2,PH大于7.像制革废水硫浓度很高就用催化氧化法。
3,以硫酸锰为催化剂,微碱调解下 曝气,就可除硫离子。
㈥ 污水处理中怎样去除水中的二价硫离子
(1)洒点硫酸铜,生成黑色沉淀!
(2)Cu^2+ + S^2- == CuS
㈦ 怎样去除污水中的硫化物
低浓度的硫就用硫酸亚铁就行,ph大于7.像制革废水硫浓度很高就用催化氧化法,以硫酸锰为催化剂,微碱调解下
曝气,就可除硫离子。
㈧ 脱硫污水处理
三级的话,很简单,加药就行,石灰、TMT,PAC,PAM然后沉淀,不过硫酸根离子很难达标,不是不能达标,是如果处理硫酸根离子都达标了,那产水就可以直接回用了,救不是三级标准了
㈨ 反渗透能去除硫吗
你说的是反渗透膜除去污水中的硫吗?
有些反渗透膜是可以做到的,但是这样的成本比较高。一般是要求比较严格的污水处理方案才使用反渗透膜除去硫元素。
反渗透膜相关的技术知识,你可以在网上搜索欣格瑞看一下。