当前位置:首页 » 污水废水 » 放射性废水的来源

放射性废水的来源

发布时间: 2021-03-11 17:21:04

Ⅰ 日本核污水是哪来的

东日本大地震造成福岛核电站泄露

3·11日本地震(日语:东北地方太平洋冲地震 、东日本大震灾,英语:The 2011 earthquake of the Pacific coast of Tōhoku)也称东日本大地震,指的是当地时间2011年3月11日14:46:21(北京时间13:46)发生在日本东北部太平洋海域(日本称此处为“三陆冲”)的强烈地震。此次地震的矩震级Mw达到9.0级(美国地质调查局数据为Mw9.1),为历史第五大地震。震中位于日本宫城县以东太平洋海域,距仙台约130km,震源深度20公里。此次地震引发的巨大海啸对日本东北部岩手县、宫城县、福岛县等地造成毁灭性破坏,并引发福岛第一核电站核泄漏。
中新网4月6日电 据日本共同社报道,当地时间6日,东京电力公司表示,福岛第一核电站含有高浓度放射性物质的污水已经停止向海中泄露。据悉,5日下午起,东电公司往连结2号竖坑的管线周边注入特殊化学药剂,以阻止高辐射水外泄。福岛第一核电站3天前发现含高浓度放射性物质的水从2号机竖坑流往大海,东电采取了往2号机竖坑灌注水泥、向连结竖坑的管线投入遇水会膨胀的吸水性聚合物等措施,但都未见效。由于2号机组涡轮机房的地下室等处发现含有高浓度放射性物质的污水,为了确保有充足的空间存放这些高辐射污水,东京电力公司4日晚开始将积存在“废弃物集中处理设施”内的低辐射污水排放到大海中。

Ⅱ 放射性污染的来源与危害

一、来源

放射性物质进入人体的途径主要有三种:呼吸道进入、消化道食入、皮肤或粘膜侵入。

1、呼吸道吸入

从呼吸道吸入的放射性物质的吸收程度与其气态物质的性质和状态有关。难溶性气溶胶吸收较慢,可溶性较快;气溶胶粒径越大,在肺部的沉积越少。气溶胶被肺泡膜吸收后,可直接进入血液流向全身。

2、消化道食入

消化道食入是放射性物质进入人体的重要途径。放射性物质既能被人体直接摄入,也能通过生物体,经食物链途径进入体内。

3、皮肤或粘膜侵入

皮肤对放射性物质的吸收能力波动范围较大,一般在 1%~1.2%左右,经由皮肤侵入的放射性污染物, 能随血液直接输送到全身。由伤口进入的放射性物质吸收率较高。

二、危害

对人体的危害主要包括三方面:

1、直接损伤

放射性物质直接使机体物质的原子或分子电离,破坏机体内某些大分子如脱氧核糖核酸、核糖核酸、蛋白质分子及一些重要的酶。

2、间接损伤

各种放射线首先将体内广泛存在的水分子电离,生成活性很强的 H+、OH-和分子产物等,继而通过它们与机体的有机成份作用,产生与直接损伤作用相同的结果。

3、远期效应

主要包括辐射致癌、白血病、白内障、寿命缩短等方面的损害以及遗传效应等。根据有关资料介绍,青年妇女在怀孕前受到诊断性照射后其小孩发生 Downs 综合症的几率增加 9 倍。

(2)放射性废水的来源扩展阅读:

污染源

1、原子能工业排放的废物

原子能工业中核燃料的提炼、精制和核燃料元件的制造,都会有放射性废弃物产生和废水、废气的排放。这些放射性“三废”都有可能造成污染,由于原子能工业生产过程的操作运行都采取了相应的安全防护措施。

2、核武器试验的沉降物

在进行大气层、地面或地下核试验时,排入大气中的放射性物质与大气中的飘尘相结合,由于重力作用或雨雪的冲刷而沉降于地球表面,这些物质称为放射性沉降物或放射性粉尘。

放射性沉降物播散的范围很大,往往可以沉降到整个地球表面,而且沉降很慢,一般需要几个月甚至几年才能落到大气对流层或地面,衰变则需上百年甚至上万年。

3、医疗放射性

医疗检查和诊断过程中,患者身体都要受到一定剂量的放射性照射,例如,进行一次肺部x光透视,约接受(4—20)×0.0001Sv的剂量(1sv相当于每克物质吸收0.001J的能量),进行一次胃部透视,约接受0.015-0.03SV的剂量。

Ⅲ 放射性污染的来源有哪些有哪些危害

(1)原子能工业排放的废物原子能工业中核燃料的提炼、精制和核燃料元件的制造,都会有放射性废弃物产生和废水、废气的排放。这些放射性“三废”都有可能造成污染,由于原子能工业生产过程的操作运行都采取了相应的安全防护措施.“三废”排放也受到严格控制,所以对环境的污染并不十分严重。但是,当原子能工厂发生意外事故,其污染是相当严重的。国外就有因原子能工厂发生故障而被迫全厂封闭的实例。 (2)核武器试验的沉降物在进行大气层、地面或地下核试验时,排入大气中的放射性物质与大气中的飘尘相结合,由于重力作用或雨雪的冲刷而沉降于地球表面,这些物质称为放射性沉降物或放射性粉尘。放射性沉降物播散的范围很大,往往可以沉降到整个地球表面,而且沉降很慢,一般需要几个月甚至几年才能落到大气对流层或地面。 (3)医疗放射性医疗检查和诊断过程中,患者身体都要受到一定剂量的放射性照射,例如,进行一次肺部x光透视,约接受(4—20)×0.0001Sv的剂量(1sv相当于每克物质吸收0.001J的能量),进行一次胃部透视,约接受0.015-0.03SV的剂量。 (4)科研放射性科研工作中广泛地应用放射性物质,除了原子能利用的研究单位外,金属冶炼、自动控制、生物工程、计量等研究部门、几乎都有涉及放射性方面的课题和试验。在这些研究工作中都有可能造成放射性污染。 放射性损伤有急性损伤和慢性损伤。如果人在短时间内受到大剂量的X射线、γ射线和中子的全身照射,就会产生急性损伤。轻者有脱毛、感染等症状。当剂量更大时,出现腹泻、呕吐等肠胃损伤。在极高的剂量照射下,发生中枢神经损伤至直死亡。总之对生物的危害非常大的!! 谢谢请您采纳!

Ⅳ 放射性污染的简介

是指由于人类活动造成物料、人体、场所、环境介质表面或者内部出现超过国家标准的放射性物质或者射线。

放射性对生物的危害是十分严重的。放射性损伤有急性损伤和慢性损伤。如果人在短时间内受到大剂量的X射线、γ射线和中子的全身照射,就会产生急性损伤。轻者有脱毛、感染等症状。当剂量更大时,出现腹泻、呕吐等肠胃损伤。在极高的剂量照射下,发生中枢神经损伤直至死亡。
对于中枢神经,症状主要有无力、怠倦、无欲、虚脱、昏睡等,严重时全身肌肉震颤而引起癫痫样痉挛。细胞分裂旺盛的小肠对电离辐射的敏感性很高,如果受到照射,上皮细胞分裂受到抑制,很快会引起淋巴组织破坏。
放射能引起淋巴细胞染色体的变化。在染色体异常中,用双着丝粒体和着丝立体环估计放射剂量。放射照射后的慢性损伤会导致人群白血病和各种癌症的发病率增加。
放射性元素的原子核在衰变过程放出α、β、γ射线的现象,俗称放射性。由放射性物质所造成的污染,叫放射性污染。放射性污染的来源有:原子能工业排放的放射性废物,核武器试验的沉降物以及医疗、科研排出的含有放射性物质的废水、废气、废渣等。
环境中的放射性物质可以由多种途径进入人体,他们发出的射线会破坏机体内的大分子结构,甚至直接破坏细胞和组织结构,给人体造成损伤。高强度辐射会灼伤皮肤,引发白血病和各种癌症,破坏人的生殖技能,严重的能在短期内致死。少量累积照射会引起慢性放射病,使造血器官、心血管系统、内分泌系统和神经系统等受到损害,发病过程往往延续几十年。

Ⅳ 放射性污染的来源有哪些

放射性污染的来源主要源于各大研究所,还有医院都会产生放射性物质废料。

Ⅵ 常见的放射性废水处理方法有哪些

放射性废水的主要去除对象是具有放射性的重金属元素,与此相关的处理技术,简单地可分为化学形态改变法和化学形态不变法两类。

放射性废水处理方法:

其中化学形态改变法包括:

1、化学沉淀法;

2、气浮法;

3、生化法。


化学形态不变法包括:

1、蒸发法;

2、 离子交换法;

3、吸附法;

4、 膜法。


化学沉淀法是向废水中投放一定量的化学絮凝剂,如硫酸钾铝、硫酸钠、硫酸铁、氯化铁等,有时还需要投加助凝剂,如活性二氧化硅、黏土、聚合电解质等,使废水中的胶体物质失去稳定而凝聚何曾细小的可沉淀的颗粒,并能于水中原有的悬浮物结合为疏松绒粒。改绒粒对水中的放射性元素具有很强的吸附能力,从而净化水中的放射性物质、胶体和悬浮物。引起放射性元素与某种不溶性沉渣共沉的原因包括了共晶、吸附、胶体化、截留和直接沉淀等多种作用,因此去除效率较高。

化学沉淀法的优点是:方法简便、费用低廉、去除元素种类较广、耐水力和水质冲击负荷较强、技术和设备较成熟。缺点是:产生的污泥需进行浓缩、脱水、固化等处理,否则极易造成二次污染。化学沉淀法适用于水质比较复杂、水量变化较大的低放射性废水,也可在与其他方法联用时作为预处理方法。


蒸发浓缩法处理放射性废水:除氚、碘等极少数元素之外,废水中的大多数放射性元素都不具有挥发性,因此用蒸发浓缩法处理,能够使这些元素大都留在残余液中而得到浓缩。蒸发法的最大优点之一是去污倍数高。使用单效蒸发器处理只含有不挥发性放射性污染物的废水时,可达到大于10的4次方的去污倍数,而使用多效蒸发器和带有除污膜装置的蒸发器更可高达10的6次方到8次方的去污倍数。此外,蒸发法基本不需要使用其他物质,不会像其他方法因为污染物的转移而产生其他形式的污染物。

尽管蒸发法效率较高,但动力消耗大、费用高,此外,还存在着腐蚀、泡沫、结垢和爆炸的危险。因此,本法较适用于处理总固体浓度大、化学成分变化大、需要高的去污倍数且流量较小的废水,特别是中高放射性水平的废水。

新型高效蒸发器的研发对于蒸发法的推广利用具有重大意义,为此,许多国家进行了大量工作,如压缩蒸汽蒸发器、薄膜蒸发器、脉冲空气蒸发器等,都具有良好的节能降耗效果。另外,对废液的预处理、抗泡和结垢等问题也进行了不少研究。


离子交换法处理放射性废水的原理是,当废液通过离子交换剂时,放射性离子交换到离子交换剂上,使废液得到净化。目前,离子交换法已广发应用于核工艺生产工艺及放射性废水处理工艺。

许多放射性元素在水中呈离子状态,其中大多数是阳离子,且放射性元素在水中是微量存在的,因此很适合离子交换出来,并且在无非放射性粒子干扰的情况下,离子交换能够长时间的工作而不失效。

离子交换法的缺点是,对原水水质要求较高;对于处理含高浓度竞争离子的废水,往往需要采用二级离子交换柱,或者在离子交换柱前附加电渗析设备,以去除常量竞争离子;对钌、单价和低原子序数元素的去除比较困难;离子交换剂的再生和处置较困难。除离子交换树脂外,还有用磺化沥青做离子交换剂的,其特点是能在饱和后进行融化-凝固处理,这样有利于放射性废物的最终处置。


吸附法是用多孔性的固体吸附剂处理放射性废水,使其中所含的一种或数种元素吸附在吸附剂的表面上,从而达到去除的目的。在放射性废液的处理中,常用的吸附剂有活性炭、沸石等。

天然斜发沸石是一种多孔状结构的无机非金属矿物,主要成分为铝硅酸盐。沸石价格低廉,安全易得,处理同类型地放射性废水的费用可比蒸发法节省80%以上,因而是一种很有竞争力的水处理药剂。它在水处理工艺中常用作吸附剂,并兼有离子交换剂和过滤剂的作用。

当前,高选择性复合吸附剂的研发是吸附法运用中的热点。所谓“复合”是指离子交换复合物(氰亚铁盐、氢氧化物、磷酸盐等)在母体(多位多孔物质)上的某些方面饱和,所以新材料结合天然母体材料的优点,具有良好的机械性能、高的交换容量以及适宜的选择性。


离子浮选法属于泡沫分离技术范畴。该方法基于待分离物质通过化学的、物理的力与捕集剂结合在一起,在鼓泡塔中被吸附在气泡表面而富集,借泡沫上升带出溶液主体,达到净化溶液主体和浓缩待分离物质的目的。例子浮选法的分离作用,主要取决于其组分在气-液界面上选择性和吸附程度。所使用捕集剂的主要成分是,表面活性剂和适量的起泡剂、络合剂、掩蔽剂等。

离子浮选法具有操作简单、能耗低、效率高和适应性广等特点。它适用于处理铀同位素生产和实验研究设施退役中产生的含有各种洗涤剂和去污剂的放射性废水,尤其是含有有机物的化学清洗剂的废水,以便充分利用该废水易于起泡的特点而达到回收金属离子和处理废水的目的。


膜处理作为一门新兴学科,正处于不断推广应用的阶段。它有可能成为处理放射性废水的一种高效、经济、可靠的方法。目前所采用的膜处理技术主要有:微滤、超滤反渗透、电渗析、电化学离子交换、铁氧体吸附过滤膜分离等方法。与传统处理工艺相比,膜技术在处理低放射性废水时,具有出水水质好,浓缩倍数高,运行稳定可靠等诸多优点。

不同的膜技术由于去除机理不同,所适用的水质与现场条件也不尽相同。此外,由于对原水水质要求较高,一般需要预处理,故膜法处理法宜与其他方法联用。

如铁凝沉淀-超滤法,适用于处理含有能与碱生成金属氢氧化物的放射性离子的废水。

水溶性多聚物-膜过滤法,适用于处理含有能被水溶性聚合物选择吸附的放射性离子的废水。

化学预处理-微滤法,通过预处理可以大大提高微滤处理放射性废水的效果,且运行费用低,设备维护简单。

Ⅶ 放射性废物的来源

放射性废物的来源大致可分为四类:
核燃料生产过程
主要包括铀矿开采、冶炼和燃料元件加工等。铀矿开采和冶炼过程产生的废物主要有废矿石、废矿渣、尾矿等固体废物,矿坑水、湿法作业中产生的工艺废水等液体废物,以及氡和钋的放射性气溶胶、粉尘等组成的气体废物。这类废物主含有铀、钍、氡、镭、钋等天然放射性物质,比活度较低,产生的数量大。铀回收和燃料元件加工过程产生的废物主要是含铀废液。
反应堆运行过程
反应堆中生成的大量裂变产物,一般情况下保留在燃料元件包壳内,当发生元件包壳破损事故时,会有少量裂变产物泄漏到冷却循环水中。反应堆冷却循环水中的杂质(循环系统腐蚀产物)受中子照射后也会形成放射性的活化产物,冷却循环水也就具有放射性。
核燃料后处理过程
大量裂变产物是核燃料后处理过程的主要废物。在燃料元件切割和溶解时有部分气体裂变产物(氪85、碘129等)从燃料元件中释放出来,进入废气系统。99%以上的裂变产物都留在燃料溶解液里。当进行化学分离时,则集中在第一萃取循环过程(见普雷克斯流程)的酸性废液中。这部分废液的比活度很高,释热量大,是放射性废物管理的重点。此外还有第二、三萃取循环过程产生的废液、工艺冷却水、洗涤水等。这部分废液体积大,但比活度较低。
其他来源
核工业部门退役的核设施,核武器生产和试验以及其他使用放射性物质的部门如医院、学校、科研单位、工厂等产生的各种废物。这些废物种类不少,形式多样。
其他来源
核工业部门退役的核设施,核武器生产和试验以及其他使用放射性物质的部门如医院、学校、科研单位、工厂等产生的各种废物。这些废物种类不少,形式多样。

Ⅷ 核污染而产生的废水怎么治理

核污染而产生的废水治理方法:

将沉淀剂与废水中微量的放射性核素发生共沉淀作版用的方法。废水中权放射性核素的氢氧化物、碳酸盐、磷酸盐等化合物大都是不溶性的,因而能在处理中被除去。

化学处理的目的是使废水中的放射性核素转移并浓集到小体积的污泥中去,而使沉积后的废水剩余很少的放射性,从而能够达到排放标准。

此法优点是费用低廉,对数放射性核素具有良好的去除效果,能够处理那些非放射性成分及其浓度以及流化相当大的废水,使用的处理设施和技术都有相当成熟的经验。



(8)放射性废水的来源扩展阅读:

我国放射性废水按放射性活度高低分为高、中、低和弱放射性废水,废水来源包括核电站废水、铀矿选冶废水、乏燃料后处理废水以及医院、科研等单位产生的废水。

核电站废水主要包括主设备和辅助设备排空水、反应堆排放水、第二回路废水、清洗废液、离子交换装置再生废水和专用洗涤水等,主要为中低放射性废水。

乏燃料后处理废水主要包括乏燃料后处理和放射性物质分离制造过程产生的废水等,这两种废水放射性浓度都很高,危险性极大。

Ⅸ 环境放射性辐射源

人类生存环境中放射性辐射的来源,主要有天然辐射和人工辐射。天然辐射源中有宇宙射线和岩石中天然放射性核素产生的放射性辐射。

(一)宇宙射线的辐射

来自星际空间的宇宙射线,其主要成分是高能质子;能谱宽度,1~1014MeV,主要为300MeV左右。其组成中约10%的4He离子及少量重粒子,以及电子、光子、中微子。它们进入地球大气层后,通过高能散裂反应产生大量次级粒子(见表2-4-1),是引起照射剂量的主要成分。

太阳为一个热核反应体,正常期间发射低能粒子;但在磁场扰动下会产生高能粒子,能量大约为1~100 MeV。在这期间,太阳粒子的注量率可能超过宇宙射线的注量率;但大部分不能穿过地球磁场,对低层大气几乎没有影响。

由于地球磁场作用,约束宇宙射线中的电子和质子绕地球运行,在10~50 km高空形成两个辐射带。在20 km以内的称内辐射带,主要是能量为几百兆电子伏以下的质子,注量率峰值在40MeV附近(在10 km高空)。在20 km高空以外的称外辐射带,主要是高能电子和少量α粒子,以及0.1~0.5 MeV能量的质子。这样高度的辐射带对航天飞行有较大影响。

宇宙射线照射对人类造成的剂量,与海拔、纬度和屏蔽体(建筑物)有关。根据海平面上空大气中宇宙射线的直接电离成分(带电粒子)的平均电离值约2.1离子对cm-3·s-1,因为空气中形成一对离子需要能量为33.85eV,则相应的空气吸收剂量率为3.2×10-8nGy·h-1。空气吸收剂量率与高度关系如图9-1-1所示。在太阳活动高峰期,海拔10 km处,空气吸收剂量率降低10%左右;在海平面上,也有变化。中子成分对地面部分所致剂量率比较低。

由于地磁场的作用,致使宇宙射线中带电粒子穿越大气受到影响,到达两极的多于赤道地区。

图9-1-1 地磁北纬50°处宇宙射线空气吸收剂量与高度关系

建筑物对宇宙射线的屏蔽作用与材质有关。对带电粒子,木板房屏蔽因子为0.96,混凝土建筑为0.42。对中子屏蔽不明显。

根据上述纬度和高度估算宇宙射线在地平面上产生的人口加权平均年有效剂量率为380μSv。

(二)宇宙射线产生的放射性核素

宇宙射线与地球物质作用的各种核反应,生成多种放射性核素(见表2-4-2)。其中对人类照射剂量贡献显著的有3H、7Be、14C和22Na,主要是通过食物链进入人体,形成内照射,年剂量估算如表9-1-1所列。总计约12.2μSv·a-1

表9-1-1 成人年食入量及有效剂量

(三)地表天然放射性核素的辐射

地表天然放射性核素主要是铀系、钍系和锕铀系(见图1-1-1),以及40K、87Rb等(见表3-1-1)。

1.天然放射性核素的外照射剂量

天然核素在自然界分布广泛,岩石、土壤、水体、大气以及生物体内都有不同的含量。近几十年来世界许多国家,对全国进行了陆地伽马空气吸收剂量率测量。主要根据铀(镭)、钍、钾在土壤中的比活度(Bq·kg-1)计算γ射线的空气吸收剂量率。

在测量地表γ辐射剂量率时,把地表看成是2π、核素均匀分布的无穷大辐射源。根据土壤中镭、钍、钾的比活度,计算1m高处γ射线照射剂量率(R),并考虑到镭、钍、钾放出γ射线的相对能量,按下式进行计算:

核辐射场与放射性勘查

式中:QRa、QTh、QK分别为土壤中226Ra、232Th、40K的比活度,Bq·kg-1;KRa、KTh、KK为剂量转换因子,单位为(nGy·h-1)/(Bq·kg-1),其中KRa=0.430(nGy·h-1)/(Bq·kg-1),KTh=0.665(nGy·h-1)/(Bq·kg-1),KK=0.0423(nGy·h-1)/(Bq·kg-1 );为1 m高处土壤γ辐射剂量率,nGy·h-1

根据地表土壤中主要天然核素的比活度,可以计算1m高处空气吸收剂量率(表9-1-2)。平均剂量率中国为72nGy·h-1;美国为55nGy·h-1

表9-1-2 土壤中天然核素引起的空气吸收剂量率

2.天然放射性核素的内照射剂量

钾是生命必须元素,经食物链进入人体;受人体平衡机制调节,有严格的量的控制。成人每千克体重含钾量1.8g;40K占钾的0.0119%,则成人体内40K的平均活度为55Bq·kg-1,造成内照射的年有效剂量为165μSv(儿童为185μSv)。

238U和232Th也可以通过食入途径进入人体,量甚微,总计年有效剂量不超过10μSv。

氡(222Rn+220Rn)为惰性气体,容易被人吸入;对人造成的内照射剂量,主要来自短寿命子体。被吸入后沉积在呼吸道内,对支气管上皮造成照射。相比之下,子体造成的剂量要大得多。

空气中氡(222Rn+220Rn)短寿命子浓度常用Bq·m-3表示。为了给出子体能量概念,常用单位体积空气中所含子体全部衰变完[即222Rn衰变至210Pb,220Rn衰变至208Pb(见图1-1-1)],所有子体释放的α粒子总能量表示,称潜能浓度,单位为MeV·m-3

根据计算,1Bq的222Rn,其衰变子体与之达到放射平衡时子体衰变释放的α粒子总能量为3.5×104MeV;220Rn为4.7×105MeV。可见沉积在体内的氡及其子体的内照射剂量远大于氡(222Rn+220Rn)气本身。根据室内外空气中氡(222Rn+220Rn)及子体的平均浓度计算的年有效剂量率,列于表9-1-3。222Rn和220Rn两项之和比天然γ射线照射产生的剂量(表9-1-2)大很多。

表9-1-3 室内外222Rn和220Rn及子体产生的年有效剂量

(四)矿产开采和选冶

矿产开采中,除了铀矿之外,煤、石油、磷灰石和地热都是放射性元素含量较高的矿产。矿产开采破坏了放射性元素的自然循环和迁移,加大了人和生物的照射剂量。

煤全球年开采量35×108 t左右,中国占一半。形成总的辐射量很难估计。根据联合国辐射效应委员会(UASCEAR)的统计:一个每天燃煤10 t的小热电厂,向大气释放的238U活度达1850 kBq。一个1000MW的热电厂,每年排放粉煤灰5×105 t,其中1.4×105 t排入大气。根据印度阿里格尔穆斯卢姆大学用裂变径迹法对两家电厂的煤、炉碴和飞灰中的铀含量进行测定:燃煤中铀平均含量为17.1×10-6(eU),炉碴为25.7×10-6(eU),而飞灰为29.1×10-6(eU)。那么一个1000MW热电厂,燃煤排放的铀一年达14.5 t,其中4 t排入大气。造成全球人均年剂量约8μSv。

磷酸盐矿物是化肥原料,全球每年使用磷肥3000×104 t(P2O5),是可迁移镭的来源之一。磷肥中238U和226Ra的比活度平均为4000Bq·kg-1和1000Bq·kg-1(P2O5),对全球人均造成剂量为2μSv/a。

铀矿开采,产生的废石、废渣、尾矿、废水,造成放射性核素包括氡大量析出。铀矿地浸开采,虽然免除了矿石外露,其最大污染是注入浸液和溶解的放射性物质进入地下水,转入食物链。

建筑材料中放射性核素含量较高的花岗岩和蚀变粘土制成的地砖等大量进入城市,进入家庭,造成局部剂量增加。

天然放射性核素所造成的年平均辐射剂量估算列于表9-1-4。

表9-1-4 天然辐射源所致年平均辐射剂量(UNSCER,2000)

(五)人工放射性辐射

人工放射性核素污染来源于核武器实验、核能生产反应堆运行、固体核废物处置和放射性同位素应用与核事故等。

核爆炸试验的能量主要是235U和239Pu的链式裂变反应以及氘、氚的聚合反应。大气核爆炸后的裂变产物经高温气化,上升扩散;其中的气态物质迅速冷凝成各种气溶胶颗粒,具有很高的放射性比活度。大颗粒在几百千米范围内沉降;较小颗粒在空中停留较长时间后在更大范围沉降;更小的颗粒进入对流层随大气环流,在同一半球同一纬度范围沉降;微小的颗粒在世界范围沉降。

放射性核素在平流层停留时间可能很长,90Sr可以停留1a,14C更长。

在核爆炸区之外造成公众外照射的主要是中长寿命核素。造成内照射的包括吸入的大气中的微粒和食入放射性污染的食物和水。美国内华达试验场1951~1956年进行过百次核爆炸,场址周围儿童甲状腺剂量高达1Gy。

固体放射性废物处置前的气态或液态流出物中3H、14C、85Kr和131I易于迁移和弥散在全球,甚至在几千万年内对公众造成照射。埋入地下的固体废物(深层或浅层)主要危险是被地下水浸出而迁移。

1964年以238Pu为动力的SNAP-9A卫星重返大气层时炸毁,约600TBq的放射性核素散入平流层中。

表9-1-5所列为各类人工辐射源的释放核素造成公众集体有效剂量的估计量。

表9-1-5 人工辐射源放射性核素释放量及所致集体有效剂量

Ⅹ 放射性物质存在哪里

放射性物质
1、放射性的基本概念

某些物质的原子核能发生衰变,放出我们肉眼看不见也感觉不到,只能用专门的仪器才能探测到的射线。物质的这种性质叫放射性。

2、放射性污染来源及分类

1)、核武器试验的沉降物(在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸汽和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其它的尘粒上,最后沉降到地面。

2)、核燃料循环的“三废”排放原子能工业的中心问题是核燃料的产生、使用与回收、核燃料循环的各个阶段均会产生“三废”,能对周围环境带来一定程度的污染。

3)、医疗照射引起的放射性污染 目前,由于辐射在医学上的广泛应用,已使医用射线源成为主要的环境人工污染源。

4)、其它各方面来源的放射性污染 其它辐射污染来源可归纳为两类:一 工业、医疗、军队、核舰艇,或研究用的放射源,因运输事故、遗失、偷窃、误用,以及废物处理等失去控制而对居民造成大剂量照射或污染环境;二是一般居民消费用品,包括含有天然或人工放射性核素的产品,如放射性发光表盘、夜光表以及彩色电视机产生的照射,虽对环境造成的污染很低,但也有研究的必要。

3、放射性对人体的危害

在大剂量的照射下,放射性对人体和动物存在着某种损害作用。如在400rad的照射下,受照射的人有5%死亡;若照射650rad,则人100%死亡。照射剂量在150rad以下,死亡率为零,但并非无损害作用,住往需经20年以后,一些症状才会表现出来。放射性也能损伤遗传物质,主要在于引起基因突变和染色体畸变,使一代甚至几代受害。

4、放射性“三废”处理

放射性废物中的放射性物质,采用一般的物理、化学及生物学的方法都不能将其消灭或破坏,只有通过放射性核素的自身衰变才能使放射性衰减到一定的水平。而许多放射性元素的半衰期十分长,并且衰变的产物又是新的放射性元素,所以放射性废物与其它废物相比在处理和处置上有许多不同之处。

1).放射性废水的处理

放射性废水的处理方法主要有稀释排放法、放置衰变法、混凝沉降法、离子变换法、蒸发法、沥青固化法、水泥固化法、塑料固化法以及玻璃固化法等。

2).放射性废气的处理

(1)铀矿开采过程中所产生废气、粉尘,一般可通过改善操作条件和通风系统得到解决。

(2)实验室废气,通常是进行预过滤,然后通过高效过滤后再排出。

(3)燃料后处理过程的废气,大部分是放射性碘和一些惰性气体。

3)、放射性固体废物的处理和处置

放射性固体废物主要是被放射性物质污染而不能再用的各种物体

但对于手机挂件来说一般不会含有的,其实手机本身的辐射就要比你说的所谓的挂件的辐射高很多

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239