当前位置:首页 » 污水废水 » 废水生物处理数学模式

废水生物处理数学模式

发布时间: 2021-03-11 23:29:19

污水处理UN ITANK什么意思

UNITANK
SEGHERS公司提出的UNITANK®系统是SBR法的又一种变型和发展,它集合了SBR和传统活性污泥法的优点,回一体化设计,不仅答具有SBR系统的主要特点,还可以像传统活性污泥法那样在恒定水位下连续流运行。经过研究和应用,UNITANK®系统已成为一个高效、经济、灵活和成熟的污水处理工艺[1、2]。

⑵ 印染废水如何选处理方法

进行印染废水处理必须根据不同的印染中含有的污染物来选用不同的处理方法,才能达回到理想效果。低浓度答的印染废水可以用吸附法来处理,高浓度的可以用化学法(Acase系列)。低浓度可以用高浓度的处理方法,只是成本上不一样划算。为了保障处理效果和经济实用,还是根据自己的废水情况来选择合适的处理方法吧。

⑶ 脱色剂处理印染污水的方法有哪些

目前印染废水处理的方法有物理法、化学法和生物法。

物理法
在物理处理法中应用最多的是吸附法,这种方法是将活性炭、黏土等多孔物质的粉末或颗粒与废水混合,或让废水通过由其颗粒状物组成的滤床,使废水中的污染物质被吸附在多孔物质表面上或被过滤除去。目前,国外主要采用活性炭吸附法(多半用于三级处理)。该法对去除水中溶解性有机物非常有效,但它不能去除水中的胶体和疏水性染料,并且它只对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料具有较好的吸附性能。Saito T等人的研究表明,活性炭的吸附率、BOD去除率、COD去除率分别达93%、92%和63%,活性炭吸附能力可达到500 mg COD/g炭,污水如先曝气,则会加快吸附速率。但若废水BOD5>200 mg/L,则采用这种方法是不经济的。
吸附处理使用的吸附剂多种多样,工程中需考虑吸附剂对染料的选择性,应根据废水水质来选择吸附剂。研究表明,在pH=12的印染废水中,用硅聚物(甲基氧)作吸附剂,阴离子染料去除率可达95%~100%。
高岭土电是一种吸附剂,研究表明经长链有机阳离子处理,高岭土能有效地吸附废水中的黄色直接染料。此外,国内也应用活性硅藻土和煤渣处理传统印染工艺废水,费用较低,脱色效果较好,其缺点是泥渣产生量大,且进一步处理难度大。

化学法
a 混凝法
主要有混凝沉淀法和混凝气浮法,所采用的混凝剂多半以铝盐或铁盐为主,其中以碱式氯化铝(PAC)的架桥吸附性能较好,而以硫酸亚铁的价格为最低。近年来,国外采用高分子混凝剂者日益增加,且有取代无机混凝剂之势,但在国内因价格原因,使用高分子混凝剂者还不多见。据报道,弱阴离子性高分子混凝剂使用范围最广,若与硫酸铝合用,则可发挥更好的效果。混凝法的主要优点是工艺流程简单、操作管理方便、设备投资省、占地面积少、对疏水性染料脱色效率很高;缺点是运行费用较高、泥渣量多且脱水困难、对亲水性染料处理效果差。
b 氧化法
臭氧氧化法在国外应用较多,Zima S.V.等人总结出了印染废水臭氧脱色的数学模式研究表明:臭氧用量为0.886 g O3/g染料时,淡褐色染料废水脱色率达80%;研究还发现,连续运转所需臭氧量高于间歇运行所需臭氧量,而反应器内安装隔板,可减少臭氧用量16.7%。因此,利用臭氧氧化脱色,宜设计成间歇运行的反应器,并可考虑在其中安装隔板。臭氧氧化法对多数染料能获得良好的脱色效果,但对硫化、还原、涂料等不溶于水的染料脱色效果较差。从国内外运行经验和结果看,该法脱色效果好,但耗电多,大规模推广应用有一定困难。
光氧化法处理印染废水脱色效率较高,但设备投资和电耗还有待进一步降低;
c 电解法
电解对处理含酸性染料的印染废水有较好的处理效果,脱色率为50%~70%,但对颜色深、CODcr高的废水处理效果较差。对染料的电化学性能研究表明,各类染料在电解处理时其CODcr去除率的大小顺序为:硫化染料、还原染料>酸性染料、活性染料>中性染料、直接染料>阳离子染料。目前这种方法正在推广应用。

生物法
20世纪70年代以来,国内对印染废水以生物处理为主,占80%以上,尤以好氧生物处理法占绝大多数。从现有情况看。我国印染废水生物处理法中以表面加速曝气和接触氧化法占多数。此外,鼓风曝气活性污泥法、射流曝气活性污泥法、生物转盘等也有应用,生物流化床尚处于试验性应用阶段。但由于生物对色度去除率不高,一般在50%左右,所以当出水色度要求较高时,需辅以物理或化学处理。
好氧生物处理对BOD去除效果明显,一般可达80%左右,但色度和COD去除率不高,尤其是PVA等化学浆料、表面活性剂、溶剂及匹布碱减量技术的广泛应用,不但使印染废水的COD达到2 000~3 000 mg/L,而且BOD/COD也由原来的0.4~0.5下降到0.2以下,单纯的好氧生物处理难度越来越大,出水难以达标;此外,好氧生物处理法的高运行费用及剩余污泥处理或处置问题历来是废水处理领域没有解决好的一个难题。据资料报道,一般污泥处理或处置费用占整个污水处理厂费用的50%~70%(国外),在国内也占40%左右。由于上述原因,印染废水的厌氧生物处理技术开始受到人们的重视。

⑷ 顾夏声的主要成就

长期从事教学和科研工作。发展处理高浓度有机废水的理论,提出对升流式厌氧污泥层(UASB)反应器处理啤酒等废水的新工艺,研究成果被列入“国家科技成果重点推广计划”和“国家环境保护最佳实用技术”,提出的二相UASB工艺对于处理含硫酸盐废水的发展前景以及废水经酸化后,用自养型硫细菌进行生物脱硫,然后进行甲烷发酵和硫回收的新工艺,是对含高硫酸盐有机废水治理技术的重大突破。在国内外首次提出UASB反应器内厌氧颗粒污泥的结构模型和颗粒污泥形成机理的“晶核生长”学说,由此找出了培养颗粒污泥的优化条件和关键技术。
他在工程方面的主要成就表现在以下4个方面:
1:主持和指导有机废水厌氧生物处理技术研究,成果达到国际先进水平。顾夏声主持的“城乡有机废水厌氧生物处理机理及高效厌氧反应器研究”课题以及他指导的国家“七五”科技攻关项目“高浓度有机废水的厌氧生物处理技术”,对升流式厌氧污泥层(UASB)反应器的理论与实践,对其微生物学特性及工程应用等进行了系统研究,在国内外首次提出厌氧颗粒污泥的结构模型及形成的“晶核生长”学说,由此找到了培养颗粒污泥的优化条件和关键技术,为其后进行的中试和生产性UASB反应器内颗粒污泥的培养提供了理论指导和技术依据。在此基础上开发的UASB反应器处理啤酒等废水新工艺,达到国际先进水平。这些成果被列入“国家科技成果重点推广计划”和“国家环境保护最佳实用技术”,已应用于多个污水处理工程,其中北京啤酒厂污水处理系统是中国规模较大的常温UASB生产性装置,被列为国家环保局示范工程。
2:主持“硫酸盐还原作用对厌氧消化的影响与控制”研究项目,使含高硫酸盐有机废水治理技术获重大突破。造纸、味精、脂肪酸、糖蜜等生产废水的有机物浓度高,由于含有大量硫酸盐,严重妨碍厌氧消化技术的应用,成为世界各国废水处理研究的重要课题之一。顾夏声与同事们分析研究了“酸化”状态下的微生物生态及控制“酸化”的措施,提出了二相UASB工艺对于处理含硫酸盐废水的发展前景,并提出废水经酸化后,用自养型硫细菌进行生物脱硫,然后进行甲烷发酵和硫回收的新工艺,使该类废水的处理技术获得重大突破。
3:参与和指导难降解有机污染物的可生化性和处理工艺研究,提出经济有效的处理途径。顾夏生研究了厌氧—缺氧—好氧系统处理焦化废水过程中微生物分布和有机物迁移转化规律,并进行了新型硝化—反硝化系统的研究,将焦化废水生物处理推向了一个新高度;对染料废水中的各种主要化合物进行了较系统深入的好氧和厌氧降解性能及机理的研究,为去除这些物质提供了理论基础,所获得的用生物转盘处理染色废水的研究成果已用于工程设计之中。
4:参与氧化塘处理废水的科技攻关,对氧化塘中碳、氮、磷的转移规律进行了深入讨论,在废水生物脱磷方面的研究成果具有重要的理论意义。 夏声学术造诣深,治学严谨,热爱教育这一神圣的事业。在任教60余年中,他始终坚持“要教好工科的书必须理论联系工程实际”,讲课坚持做到“深入浅出,少而精,条理清晰”。顾夏声为中国市政工程和环境工程培养了一大批学术带头人和专家,有的已经成为中国工程院院士。
顾夏声在60余年教学生涯中,始终坚持“要教好工科的书必须理论联系工程实际”,为我国市政工程和环境工程培养了一大批学术带头人和高级专家,包括我国自己培养的第一位环境工程博士。他曾任建设部高校给水排水及环境工程教材编审委员会主任和国家教委环境工程类专业教材委员会主任委员,组织研究明确了环境工程专业的学科归属、专业内容、培养目标等,制定了教学计划和各课程基本要求,组织编写系统教材,为环境工程、市政工程教育事业做出重大贡献。曾获北京市高教系统“教书育人”先进工作者、全国环境教育先进个人等称号。他长期从事有机废水厌氧生物处理技术研究,对升流式厌氧污泥床(UASB)反应器的理论与实践及其微生物学特性和工程应用进行了系统研究,先后获国家科学技术委员会三等奖、国家教委科技进步一等奖、北京市科技成果奖、全国环保科技成果奖等。
顾夏声一贯重视教材建设。他本人或带领年轻教师编写了多本高质量的教材,并随时把新的研究成果纳入教材,给学生以最新的知识。如他与李献文等合编的《水处理微生物学基础》曾三次再版,受到师生们的好评。他同时担任建设部高校给水排水及环境工程教材编审委员会主任和国家教委环境工程类专业教材委员会主任委员。在有关部门的领导下,他与其他委员一起,就环境工程专业的学科归属、专业内容、培养目标等问题进行了多次研究讨论,明确了该专业的定位及培养目标,制定了教学计划和各课程的基本要求,编写教材18种,使环境工程专业有了比较系统、基本成套的试用教材,为环境工程、市政工程教育事业做出了重大贡献。改革开放以来,顾夏声培养出了中国第一位环境工程博士。他对研究生严格要求、精心培养;强调学生知识结构的合理性、适应性,尤其注意充实其基础知识和拓宽其知识面;要求学生把书本知识应用到工程实际,同时以实际工作的经验充实理论。顾夏声言传身教,培养的博士生业务素质好、思想觉悟高,多数已成为各个单位的业务骨干。 学生:清华大学环境系教授、中国第一位环境工程博士张晓健 如顾夏声与李献文等合编的《水处理微生物学基础》曾两次再版
顾夏声编写过十八种教材,获教委和建设部优秀教材奖。他提出UASB反应器处理啤酒等废水的新工艺,被列入“国家科技成果重点计划”和“国家环境保护最佳实用技术”。长期从事给水排水和环境工程的教学与研究。撰有论文《中国水污染控制技术与展望》、《生物接触氧化法动力学模型》,主编《水处理工程》、《废水生物处理数学模型》。
60年代中期,该讲义得到学校的认同,并在校内进行铅印作为教学材料下发。后建设部教材会讨论决定正式编写《水处理微生物学》,但后期编著工作因文化大革命而停止了。文革结束后,随着教材指导委员会的恢复,全国进行课程改革,正式将“水处理微生物学”作为一门独立课程在各高校环境工程专业开设。《水处理微生物学》最大的特点就是紧密结合专业,深入浅出地说明最基本的微生物作用于污水处理的运转,比如通过观察原生动物在污水处理中的变化来看污泥膨胀的问题等。后随着科学理论和水处理技术的发展,第二、三版在内容上均有所增添。
顾先生1949年回国后即受聘到国立唐山工学院任教,后调至北京大学、清华大学任教,致力于给排水工程和环境工程的研究和教学,其中《水处理微生物学》是他和李献文先生等人合编的专业基础教材,该教材填补了中国在环境工程领域尤其是污水处理微生物教材的空白。《水处理微生物学》教材自1980年出版以来,曾3次修订,《水处理微生物》(第三版)于2006年再次修订,形成第四版——《水处理生物学》。
1陶葆楷、顾夏声,沼气池中粪便消化效能的研究,清华大学学报,1959,6(2)。
2顾夏声、黄铭荣、钱易等,废水处理与利用,中国建筑工业出版社,1978。
3顾夏声、李献文,水处理微生物学基础,第一版,中国建筑工业出版社,1980。
4Gu Xiasheng,The Status and Trend of Water Pollution Control Technology in China,Water International,1982,7(2)
5顾夏声,废水生物处理数学模式,第一版,清华大学出版社,1982。
6顾夏声、胡纪萃、俞毓馨、胡琼玲,空气混合活性污泥法处理合成氨装置碳黑废水的研究,清华大学学报,1983,23(1)。
7Hu Jicui,Gu Xiasheng,A Kinetic Model of the Biological Contact Oxidation Process,International Journal for Development Technology,1985,3:241~249
8顾夏声、黄铭荣、王占生等,水处理工程,清华大学出版社,1985。
9吴唯民、胡纪萃、顾夏声,厌氧升流式污泥层反应器内污泥颗粒化对固液分离效果的影响,环境科学学报,1986,6(1)。
10顾夏声、李献文、俞毓馨,水处理微生物学基础,第二版,中国建筑工业出版社,1987。
11Weimin Wu,Jicui Hu,Xiasheng Gu,Yizhang Zhao,Cultivation of Anearobic Granular Sludge in UASB Reactor with Aerobic Activated Sludge Seed,Wat.Res.,1987,21(7)
12吴唯民、胡纪萃、顾夏声,厌氧污泥的最大比产甲烷速率的间歇试验测定法,中国给水排水,1988,1(4)。
13Jicui Hu,Weimin Wu,Xiasheng Gu,A Study on the Feasibility of Using Activated Sludge as Seed Material for an Anaerobic Reactor,Wat.Sci.Tech.,1988,20(11/12)。
14赵健夫、钱易、顾夏声,用厌氧酸化预处理焦化废水的研究,环境科学,1990,11(3)。
15赵健夫、钱易、顾夏声,焦化废水中难降解物的分析,环境工程,1991,9(1)。
16Zhang Xiaojian,Wang Zhansheng,Gu Xiasheng,Simple Combination of Biodegradation and Carbon Adsorption-The Mechanism of the Biological Activated Carbon Process,Wat.Res.,1991,25(2)
17刘双江、胡纪萃、顾夏声,升流式厌氧污泥床处理豆制品废水,中国给水排水,1992,8(1)。
18刘双江、胡纪萃、顾夏声,厌氧颗粒污泥形成过程中胞外多聚物作用的研究,中国沼气,1992,10(1)。
19竺建荣、胡纪萃、顾夏声,二相UASB工艺微生物生态学的研究,中国沼气,1992,10(2)。
20周琪、袁嗣兵、竺建荣、胡纪萃、顾夏声,升流式厌氧污泥床处理生活污水,中国给水排水,1992,8(4)。
21文湘华、钱易、顾夏声,生物稳定塘碳、氮、磷物质迁移转化模型的研究,生态学报,1992,12(1)。
22文湘华、钱易、顾夏声,生物稳定塘常规运行状态模拟与分析,环境科学,1992,13(3)。
23周岳溪、钱易、顾夏声,生物除磷过程中乙酸盐厌氧代谢机理的研究,环境科学研究,1992,5(3)。
24周岳溪、钱易、顾夏声,假单胞菌磷代谢特性的研究,环境科学,1992,13(5)。
25周岳溪、钱易、顾夏声,循序间歇式废水生物除磷处理工艺微生物特性的研究,环境科学研究,1992,5(6)。
26顾夏声,废水生物处理数学模式,第二版,清华大学出版社,1993。
27竺建荣、胡贵平、胡纪萃、顾夏声,胞外多聚物在污泥颗粒化过程中的作用研究,中国沼气,1993,11(3)。
28耿艳楼、钱易、顾夏声,简捷硝化-反硝化过程处理焦化废水的研究,环境科学,1993,14(3)。
29竺建荣、胡纪萃、顾夏声,颗粒污泥的产甲烷细菌及结构模型初探,微生物学报,1994,33(4)。
30安仁虎、钱易、顾夏声,厌氧过程在厌氧-好氧工艺处理染料工业废水中的作用,环境科学研究,1994,7(3)。
31Mai Wenning,Jian Zhangpeng,Gu Xiasheng,A Test Method for Determining Biodegradability of Organic Substance,J.of Environmental Science,1995,7(2)
32左剑恶、袁琳、胡纪萃、顾夏声,利用无色硫细菌氧化废水中硫化物的研究,环境科学,1995,16(6)。
33王永仪、杨志华、蒋展鹏、顾夏声、刘勇,H-酸废母液的湿式空气氧化处理,环境科学,1996,17(1)。
34何苗、张晓健、瞿福平、顾夏声,焦化废水中有机物在活性污泥法处理中的去除特性,中国给水排水,1997,13(1)。
35瞿福平、张晓健、何苗、顾夏声,氯苯类有机物生物降解性及共代谢作用研究,中国环境科学,1997,17(2)。
36何苗、张晓健、瞿福平、顾夏声,难降解有机物生物抑制特性的研究,环境科学,1997,18(2)。
37何苗、张晓健、顾夏声,杂环化合物及多环方烃厌氧酸化降解性能的研究,中国给水排水,1997,13(3)。
38何苗、张晓健、瞿福平、顾夏声,混合基质条件下难降解有机物生物降解性能,环境科学,1997,18(3)。
39顾夏声、李献文、竺建荣,水处理微生物学,第三版,中国建筑工业出版社,1998。
40杨洋、左剑恶、卜德华、顾夏声,好氧颗粒污泥亚硝化工艺的启动与运行特性研究,环境科学,2007,28(11)。
41顾夏声,胡洪营等,水处理生物学,第四版,中国建筑工业出版社,2006。

⑸ 好氧活性污泥处理生活废水

活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
你是想问好氧活性污泥处理生活废水的工艺流程呢?还是想问出水的具体数据呢?
活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。
1 污泥负荷法
这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。
污泥负荷法的计算式为〔1〕:
V=24LjQ/1000FwNw=24LjQ/1000Fr (1)
污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为:
Fw=0.2~0.4 kgBOD/(kgMLSS·d)
Fr=0.4~0.9 kgBOD/(m3池容·d)
可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。
污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/(kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)〔2〕,其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢?
污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和BOD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。
综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)〔3〕,1995年又推出了活性污泥二号模型(简称ASM2)〔4、5〕。
2 数学模型法
数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。
数学模型法的主要问题是模型中有很多系数和常数,ASM1中有13个,ASM2中有19个,它们都需要设计人员根据实际污水水质和处理工艺的要求确定具体数值,其中多数要经过大量监测分析后才能得出,而且不同的污水有不同的数值。由于污水水质多变,确定这些参数很困难,如果这些参数有误,就直接影响到计算结果的精确性和可靠性。国外已经提出了这些参数的数值,但我国的污水成分与国外有很大差别,特别是污水中的有机物成分差别很大,盲目套用国外的参数值肯定是不行的。因此,要将数学模型法应用于我国的污水处理设计,必须组织力量监测分析各种污水水质,确定有关参数,才有可能把数学模型实用化。然而,从我国目前情况看,数据分析和积累恰恰是最大的薄弱环节之一,我国已运转的城市污水处理厂有上百座,至今连一些最基本的数据都难以确定,更不用说数学模型法所需的各种数据了,显然,要在我国应用数学模型法还需做大量的工作,还需要相当长的时间。
3 泥龄法
3.1泥龄法的计算式
设计规范中提出了按泥龄计算曝气池容积的计算公式〔1〕:
V=〔24QθcY(Lj-Lch)/1 000Nwv(1+Kdθc) (2)
设计规范对式中几个关键参数提出了推荐值:
Y=0.4~0.8(20℃,有初沉池)
Kd=0.04~0.075(20℃)
当水温变化时,按下式修正:
Kdt=Kd20(θt)t-20 (3)
式中 θt——温度系数,θt=1.02~1.06
θc——高负荷取0.2~2.5,中负荷取5~15,低负荷取20~30
可以看出,它们的取值范围都很宽,Y值的变化幅度达100%,Kd值的变化幅度达87.5%,θc值的变化幅度从50%到几倍,实际计算时很难取值,这也是泥龄法在我国难以推广的原因之一。
为了使泥龄计算法实用化,笔者根据自己的设计体会,建议采用德国目前使用的ATV标准中的计算公式,并对式中的关键参数取值结合我国具体情况适当修改。实践证明,按该公式计算概念清晰,特别便于操作,计算结果都能满足我国规范的要求,不失为一种简单、可信而又十分有效的设计计算方法。其基本计算公式为:
V=24QθcY(Lj-Lch)/1000Nw (4)
式中 Y——污泥产率系数(kgSS/kgBOD)
Q、Lj、Lch值是设计初始条件,是反映原水水量、水质和处理要求的,在设计计算前已经确定。
泥龄θc是指污泥在曝气池中的平均停留时间,其数值为:
θc=VNw/W (5)
式中 W——剩余污泥量,kgSS/d
W=24QY(Lj-Lch)/1000 (6)
根据以上计算式,采用泥龄法设计计算活性污泥工艺时,只需确定泥龄θc、剩余污泥量W(或污泥产率系数Y)和曝气池混合液悬浮固体平均浓度Nw(MLSS)即可求出曝气池容积V。与污泥负荷法相比,它用泥龄θc取代Fw或Fr作为设计计算的最基本参数,与数学模型法相比,它只需测定一个污泥产率系数Y,而不需测定13或19个参数数据。
3.2泥龄的确定
泥龄是根据理论同时又参照经验的累积确定的,按照处理要求和处理厂规模的不同而采用不同的泥龄,德国ATV标准中单级活性污泥工艺污水处理厂的最小泥龄数值见表1。
表1 德国标准中活性污泥工艺的最小泥龄
d处理目标处理厂规模
≤5 000 m3/d≥25 000 m3/d
无硝化54
有硝化(设计温度:10 ℃)108
有硝化、反硝化(10 ℃)
VD/V=0.2
VD/V=0.3
VD/V=0.4
VD/V=0.512
13
15
1810
11
13
16
有硝化、反硝化、污泥稳定25不推荐
注 VD/V为反硝化池容与总池容之比。

表中对规模小的污水厂取大值,是考虑到小厂的进水水质变化幅度大,运行工况变化幅度大,因而选用较大的安全系数。
泥龄反映了微生物在曝气池中的平均停留时间,泥龄的长短与污水处理效果有两方面的关系:一方面是泥龄越长,微生物在曝气池中停留时间越长,微生物降解有机污染物的时间越长,对有机污染物降解越彻底,处理效果越好;另一方面是泥龄长短对微生物种群有选择性,因为不同种群的微生物有不同的世代周期,如果泥龄小于某种微生物的世代周期,这种微生物还来不及繁殖就排出池外,不可能在池中生存,为了培养繁殖所需要的某种微生物,选定的泥龄必须大于该种微生物的世代周期。最明显的例子是硝化菌,它是产生硝化作用的微生物,它的世代周期较长,并要求好氧环境,所以在污水进行硝化时须有较长的好氧泥龄。当污水反硝化时,是反硝化菌在工作,反硝化菌需要缺氧环境,为了进行反硝化,就必须有缺氧段(区段或时段),随着反硝化氮量的增大,需要的反硝化菌越多,也就是缺氧段和缺氧泥龄要加长。上述关系的量化已体现在表1中。
无硝化污水处理厂的最小泥龄选择4~5 d,是针对生活污水的水质并使处理出水达到BOD=30 mg/L和SS=30 mg/L确定的,这是多年实践经验的积累,就像污泥负荷的取值一样。
有硝化的污水处理厂,泥龄必须大于硝化菌的世代周期,设计通常采用一个安全系数,以确保硝化作用的进行,其计算式为:
θc=F(1/μo) (7)
式中θ c——满足硝化要求的设计泥龄,d
F——安全系数,取值范围2.0~3.0,通常取2.3
1/μo——硝化菌世代周期,d
μo——硝化菌比生长速率,d-1
μo=0.47×1.103(T-15) (8)
式中 T——设计污水温度,北方地区通常取10 ℃,南方地区可取11~12 ℃
代入式(8)得:
μo=0.47×1.103(10-15)=0.288/d
再代入式(7)得:
θc=2.3×1/0.288=7.99 d
计算所得数值与表1中的数值相符。
表1是德国标准,但它的理论依据和经验积累具有普遍意义,并不随水质变化而改变,因此笔者认为可以在我国设计中应用。
在污泥负荷法中,污泥负荷是最基本的设计参数,泥龄是导出参数。而在泥龄法中,泥龄是最基本的设计参数,污泥负荷是导出参数,两者呈近似反比关系:
θcFw=Lj/Y(Lj-Lch) (9)
式中污泥产率系数Y是泥龄θc的函数。

3.3污泥产率系数的确定
采用泥龄法进行活性污泥工艺设计计算时,准确确定污泥产率系数Y是十分重要的,从式(4)中看出,曝气池容积与Y值成正比,Y值直接影响曝气池容积的大小。
式(6)给出了Y值和剩余污泥量W的关系,剩余污泥量是每天从生物处理系统中排出的污泥量,它包括两部分:一部分随出水排除,一部分排至污泥处理系统,其计算式为:
W=24QNch/1000+QsNs (10)
式中 Nch——出水悬浮固体浓度,mg/L
Qs——排至污泥处理系统的剩余污泥量,m3/d
Ns——排至污泥处理系统的剩余污泥浓度,kg/m3
剩余污泥量最好是实测求得。从式(10)可以看出,对于正常运行的污水处理厂,Q、Nch、Qs及Ns值都不难测定,这样就能求出W和Y值。问题在于设计时还没有污水处理厂,只有参照其他类似污水处理厂的数值。由于污水水质不同,处理程度及环境条件不同,各地得出的Y值不可能一样,特别是很多城市污水处理厂由于资金短缺等原因,运行往往不正常,剩余污泥量W的数值也测不准确,这势必影响设计的精确性和可靠性。
从理论上分析,污泥产率系数与原水水质、处理程度和污水温度等因素有关。首先,污泥产率系数本来的含义是一定量BOD降解后产生的SS。由于是有机物降解产物,这里的SS应该是VSS,即挥发性悬浮固体,但污水中还有相当数量的无机悬浮固体和难降解有机悬浮固体,它们并未被微生物降解,而是原封不动地沉积到污泥中,结果产生的SS将大于真正由BOD降解产生的VSS,因此在确定污泥产率系数时,必须考虑原水中
无机悬浮固体和难降解有机悬浮固体的含量。其次,随着处理程度的提高,污泥泥龄的增长,有机物降解越彻底,微生物的衰减也越多,这导致剩余污泥量的减少。至于水温,是影响生化过程的重要因素,水温增高,生化过程加快,将使剩余污泥量减少。对于各种因素的影响,可根据理论分析通过实验建立数学方程式,其计算结果如经受住实践的检验,就可用于实际工程。德国已经提出了这样的方程式,按这个方程式计算出的Y值已正式写进ATV标准中。
Y=0.6(Nj/Lj+1)-0.072×0.6θc×FT/1+0.08θc×FT (11)
F=1.072(T-15) (12)
式中 Nj ——进水悬浮固体浓度,mg/L
FT——温度修正系数
T——设计水温,与前面的计算取相同数值
可以看出,Nj/Lj值反映了污水中无机悬浮固体和难降解悬浮固体所占比重的大小,如果它们占的比重增大,剩余污泥量自然要增加,Y值也就增大了。θc值影响污泥的衰减,θc值增长,污泥衰减得多,Y值相应减少。温度的影响体现在FT值上,水温增高,FT值增大,Y值减小,也就是剩余污泥量减少。
这个方程式对我国具有参考价值。由于我国的生活习惯与西方国家差异很大,污水中有机物比重低,有机物中脂肪比例低,碳水化合物比例高,因而产泥量也不会完全相同。根据国内已公布的数据和笔者的经验,我国活性污泥工艺污水处理厂的剩余污泥产量比西方国家要少,因此,式(11)中须乘上一个修正系数K:
Y=K×0.6(NjLj+1)-〔(0.072×0.6θc×FT)/(1+0.08θc×FT) (13)
一般取K=0.8~0.9。
在目前缺乏我国自己的Y值计算式的情况下,笔者认为采用式(13)计算Y值是可行的。
3.4 MLSS的确定
不管采用哪种设计计算方法,都需要合理确定MLSS。在其他条件不变的情况下,MLSS增大一倍,曝气池容就减小一倍;MLSS减小一倍,曝气池容就增大一倍。它直接影响基建投资,因此需要慎重确定。
在设计规范和手册中,对MLSS值推荐了一个选用范围,如普通曝气是1.5~2.5 kg/m3,延时曝气是2.5~5.0 kg/m3,变化幅度都比较大,设计时不好操作。为了选定合适的MLSS值,有必要弄清影响它的因素。
MLSS不能选得过低,主要有三个原因:
①MLSS过低,曝气池容积V就要相应增大,在经济上不利。
②MLSS过低,曝气池中容易产生泡沫,为了防止泡沫,一般需保持2 kg/m3以上的污泥浓度。
③当污泥浓度很低时,所需氧量较少,如MLSS过低,池容增大,单位池容的供气量就很小,有可能满足不了池内混合的要求,势必额外增加搅拌设备。MLSS也不能选得过高,主要是因为:
①要提高MLSS,必须相应增加污泥回流比,降低二沉池表面负荷,加长二沉池停留时间,这就要求增大二沉池体积和回流污泥能耗。把曝气池、二沉池和回流污泥泵房作为一个整体来考虑,为使造价和运行费用总价最低,污泥回流比通常限制在150%以内。对于一般城市污水,二沉池的回流污泥浓度通常为4~8 kg/m3,若按最高值约8 kg/m3计,回流比为150%时的曝气池内MLSS为4.8kg/m3,实际设计中MLSS最高一般不超过4.5kg/m3。
②污水的性质和曝气池运行工况对MLSS有巨大影响,如果污水中的成分或曝气池的工况有利于污泥膨胀,污泥指数SVI值居高不下(如SVI>180 mL/g),回流污泥浓度就会大大降低,MLSS就必须选择低值。
根据以上分析,在选定MLSS时要照顾到各个方面:
①泥龄长、污泥负荷低,选较高值;泥龄短、污泥负荷高,选较低值;同步污泥好氧稳定时,选高值。
②有初沉池时选较低值,无初沉池时选较高值。
③SVI值低时选较高值,高时选较低值。
④污水浓度高时选较高值,低时选较低值。
⑤合建反应池(如SBR)不存在污泥回流问题,选较高值或高值。
⑥核算搅拌功率是否满足要求,如不满足时要进行适当调整。
德国ATV标准对MLSS值规定了选用范围,有硝化和无硝化时其MLSS值是一样的,这不完全符合我国具体情况。我国城市污水污染物浓度通常较低,在无硝化(泥龄短)时如果MLSS值过高,有可能停留时间过短,不利于生化处理,故将无硝化时的MLSS值降低0.5kg/m3,推荐的MLSS值列于表2。
表2 推荐曝气池MLSS取值范围
kg/m3处理目标MLSS
有初沉池无初沉池
无硝化2.0~3.03.0~4.0
有硝化(和反硝化)2.5~3.53.5~4.5
污泥稳定 4.5

3.5泥龄法的优缺点
①泥龄法是经验和理论相结合的设计计算方法,泥龄θc和污泥产率系数Y值的确定都有充分的理论依据,又有经验的积累,因而更加准确可靠。
②泥龄法很直观,根据泥龄大小对所选工艺能否实现硝化、反硝化和污泥稳定一目了然。
③泥龄法的计算中只使用MLSS值,不使用MLVSS值,污泥中无机物所占比重的不同在参数Y值中体现,因而不会引起两者的混淆。
④泥龄法中最基本的参数——泥龄θc和污泥产率系数Y都有变化幅度很小的推荐值和计算值,操作起来比选定污泥负荷值更方便容易。
⑤泥龄法不像数学模型法那样需要确定很多参数,使操作大大简化。
⑥计算污泥产率系数Y值的方程式是根据德国的污水水质和实验得出的,结合我国情况在应用时需乘以一个修正系数。
4 结论
①活性污泥工艺的设计计算方法有必要从污泥负荷法逐步向泥龄法过渡,最终过渡到数学模型法。在数学模型法实用化之前,泥龄法将发挥重要作用。
②按泥龄法计算用式(4),该式与设计规范中的计算式相比,Nw与Nwv的转换和污泥衰减的影响在Y值的计算中考虑,这样理论意义更加清晰,使用起来更加方便。
③德国ATV标准中推荐的泥龄选用数据(见表1)是根据有机物降解和微生物生长规律结合实
际经验产生的,不涉及污水的具体水质变化,在我国有实用价值。
④污泥产率系数Y值的计算式(11)有充分的理论依据,但它是用德国污水实验得出的,为了适用于我国,须乘以修正系数,修正后的计算式(13)可用于实际设计计算。
⑤MLSS的取值在设计规范中有规定,但范围较大,不太好操作,建议参照表2中的数据选用,相互对比检验。
⑥建议对我国有一定代表性的城市污水进行实验研究,推出自己的Y值计算方程式,使泥龄法的实用基础更加扎实可靠。
活性污泥法处理城市生活污水主要运行方式:
1、推流式活性污泥法
2、完全混合活性污泥法
3、分段曝气活性污泥法
4、吸附-再生活性污泥法
5、延时曝气活性污泥法
6、高负荷活性污泥法
7、浅层、深水、深井曝气活性污泥法
8、纯氧曝气活性污泥法
9、氧化沟工艺
10、序批式活性污泥法

⑹ 印染废水怎么处理

印染废水是交难处理的工业废水之一,它具有COD浓度高、色度大、含盐量高、内有机物难生化降解及水质水容量随时间变化较大(废水间歇性排放)等特点。

印染废水处理的最突出问题是色度和难降解有机物的去除问题。

印染废水处理方法有生物法、物化法及几种方法的联合使用。

废水中的主要污染物为COD、BOD5、SS和色度等,正常生产时排放废水中微3000t/d。

⑺ 中国哪些大学环境工程考水污染控制工程

华中科大,中国地质

⑻ 速分生物技术处理污水效果怎么样

该项目所采用的处理工艺的核心部分,即速分生化处理技术,为北京科净源科技股份有限公司自主研发的专利技术,近年来取得了多项荣誉,并成功应用于多处国家级重点工程:
(1)几项专利技术名称与专利号;
“一种用于污水净化装置的速分生化球”——ZL 02253989.1 “速分生物污水处理系统”——ZL 2005201450346 “速分生物污水处理方法及系统”——ZL 200510132150.9
“用于水体生物净化处理的载体生化球及生物净化床”——ZL 200620158684.9
“速分生物处理装置”——ZL 200720169890.4
“用于污水净化装置的速分生化球”——ZL 200720103339.X “景观水环境仿生强化净化方法”——ZL 200710100171.1 “一种用于污水净化装置的填料”——ZL 200810113599.4 “一种用于污水净化的速分生化球”——ZL 200820108330.2 (2)速分生化处理系统及装置通过了国家级科学技术成果鉴定; (3)荣获国家环保部颁发的2007年环境保护科学技术二等奖; (4)速分生化处理工艺是国家建筑标准设计图集《建筑中水处理工程(二)》(08SS703-2)推荐使用的污水生化处理工艺;
(5)与大学合作完成了速分工艺的数学模型分析;
(6)应用于奥运会主会场——森林公园15座污水处理项目;
(7)应用于残奥中心污水处理项目;
(8)应用于亚洲博鳌论坛北京文化坛污水处理项目;
(9)应用于全国三个生态县之一 ——北京密云县污水处理项目。
1、速分生物处理技术的提出
1.1目前污水处理厂设计运行中存在的问题
国内外大部分污废水的处理均采用以生物处理为主的工艺技术,原因在于生物处理工艺具有运行费用低,处理程度高的优势,但同时生物法也存在着许多迫切需要解决的重大问题。
1.1.1气味问题
由于污水处理过程中会产生不良气味,导致污水处理厂建设一直遵循“宜远不宜近”的原则,大多远离城镇居民生活区,继而造成管网投资庞大,回用成本高。为了解决这一问题,需要从工艺原理上解决气味问题,减少产生臭气的环节。 1.1.2污泥问题
生物法往往伴随着剩余污泥的处理问题,造成污水处理厂建设运行过程中,大量剩余污泥处理困难,增加投资、处理成本。为了解决这一问题,需要深入研究污泥减量化问题,从根本上降低污泥处理费用,同时可以改善污水处理厂周边的环境。 1.1.3建设规模与实际负荷差距问题
污水处理厂建设,多执行“宜大不宜小”的原则,造成建设规模与实际负荷的巨大偏差,运行成本高,无法形成良性循环。由此,需研制一种启动速度快,不需接种、驯化,可适应模块化运行的生物处理工艺。再将污水处理构筑物建设成模块化的单元,根据污水量的变化决定模块的建设数量和运行数量。 1.1.4微污染水的治理难
地表水富营养化程度日趋严重,但其水质指标较生活污水要低很多,造成常规污水生物处理工艺很难适应,处理效率低。而化学氧化等化学、物理深度处理技术,处理成本之高,很难大规模应用。因此需要研发出处理程度高、运行成本低的适用于微污染水体的处理技术和工艺。
1.1.5运行成本问题
各种化学、生物、膜处理工艺的运行成本问题,一直以来制约其推广应用,特别是在我国目前经济状况下,很多处理设施建得起,用不起。为解决这一问题,只能从源头的处理工艺上,降低能耗,解决运行费用高的问题。 1.1.6运行操作复杂问题
常规生物处理工艺,流程长,运行过程中其维护、操作均需较强的专业性,造成许多污水处理设施不能长期稳定运行。因此,需从工艺上解决操作难的问题,推出“傻瓜工艺”。

1.2速分生化处理工艺的技术指标
COD去除率85%以上,BOD去除率90%以上,NH3-N去除率90%以上,总氮去除率85%以上;

⑼ 推导废水生物处理工程数学模式的三点假设是什么

1 系统在稳态下运行
2 进水基质为溶解态的,水中不含微生物
3 二沉池中不存在生化反应,即二沉池污泥没有活性,不存在代谢活动

热点内容
丁度巴拉斯情人电影推荐 发布:2024-08-19 09:13:07 浏览:886
类似深水的露点电影 发布:2024-08-19 09:10:12 浏览:80
《消失的眼角膜》2电影 发布:2024-08-19 08:34:43 浏览:878
私人影院什么电影好看 发布:2024-08-19 08:33:32 浏览:593
干 B 发布:2024-08-19 08:30:21 浏览:910
夜晚看片网站 发布:2024-08-19 08:20:59 浏览:440
台湾男同电影《越界》 发布:2024-08-19 08:04:35 浏览:290
看电影选座位追女孩 发布:2024-08-19 07:54:42 浏览:975
日本a级爱情 发布:2024-08-19 07:30:38 浏览:832
生活中的玛丽类似电影 发布:2024-08-19 07:26:46 浏览:239