不饱和树脂固化度
❶ 不饱和树脂在多高温度能自行固化
先加热树脂至30度左右。然后按正常工序添加助剂,搅拌均匀即可
❷ 不饱和树脂的固化剂有哪几种一般用量是多少以及原理是什么
按引发方式的不同,不饱和聚酯树脂固化类型可为三种:
热固化:靠外部加热使固化剂释回放游离基,从而引发答树脂固化的过程。(也称为热引发固化)
冷固化:在室温或固化温度不高的条件下,通过加入促进剂使固化剂释放游离基从而使树脂固化的过程。(也称为化学分解引发固化)
光固化:通过加入光敏剂,用紫外线作为能源,引发树脂交联固化的过程。(也称为光引发固化)
冷固化体系中常用的固化剂类型
1、 过氧化环己酮(是多种氢过氧化物的混合物)
过氧化环己酮溶解在二丁酯中,成为50%的糊状物,称为1#固化剂
2、过氧化二苯甲酰(是一种过氧化物,简称BPO)
过氧化二苯甲酰溶解在二丁酯中,成为50%的糊状物,称为2#固化剂
3、 过氧化甲乙酮(简称MEKP)
❸ 不饱和树脂如何延长固化时间
1、固化时间从加入固化剂到固化为止,但是这个指标是很粗糙的。
2、正常固化时间随固专化剂促进属剂的量而变,更与环境温度和一次配胶量密切相关,不同工艺有不同的时间要求。
3、放热峰是树脂的固定性质,但是固化时间越短,会感到发热越集中。
4、很多时候,比如气温很低,只加入固化剂(引发剂),树脂的交联固化引发速度太慢,所以要加入促进剂帮忙。所以降低促进剂的含量可以延长固化时间
5、一般来说,填料的加入也会减缓反应速度,延长固化时间
❹ 196不饱和树脂固化时制品放热温度最高时多少度
你说的是抄使不饱和聚酯树脂固化的环境温度还是树脂固化时的放热峰的温度?如果是想降低固化时的环境温度,可适当多添加促进剂,在冬季还可以添加特种促进剂来达到。如果是想降低固化放热峰的温度以减少制品开裂的危险,少添加一些引发剂和促进剂,并适当降低环境温度,这样就可以降低不饱和聚酯树脂的固化速度,其放热峰就会适当地下降。
❺ 不饱和树脂的固化问题
那就只有改性树脂了,而不是简单的改变固化体系。你要上韧性,就必内然是要牺牲刚度和耐容候耐腐蚀性的。
具体办法就是
1.从树脂下手,加入一定量的长链2元醇,使固化体系的分子边长,变柔增加韧性,我曾经做过一个树脂(当然不是大众用的),用材料实验机根本压不断只会弯。但是强度不是很高,你可以做几个小样,添加不同比例开始。
2.延长凝胶时间,在促进剂的量上下点工夫,同样也是做几个小样对比。
不同树脂性能无法完全一样,所以必须做试验。
❻ 请问不饱和树脂能不能固化用什么固化剂
具有粘性的可流动的不饱和聚酯树脂,在引发剂存在下发生自由基共聚合反应,而生成性能稳定的体型结构的过程称为不饱和聚酯的固化。
发生在线型聚酯树脂分子和交联剂分子之间的自由基共聚合反应,其反应机理同前述自由基共聚反应的机理基本相同,所不同的它是在具有多个双键的聚酯大分子(即具有多个官能团)和交联剂苯乙烯的双键之间发生的共聚,其最终结果,必然形成体型结构。
固化的阶段性
不饱和聚酯树脂的整个固化过程包括三个阶段:
凝胶——从粘流态树脂到失去流动性生成半固体状有弹性的凝胶;
定型——从凝胶到具有一定硬度和固定形状,可以从模具上将固化物取下而不发生变形;
熟化——具有稳定的化学、物理性能,达到较高的固化度。
一切具有活性的线型低聚物的固化过程,都可分为三个阶段,但由于反应的机理和条件不同,其三个阶段所表现的特点也不同。不饱和聚酯树脂的固化是自由基共聚反应,因此具有链锁反应的性质,表现在三个阶段上,其时间间隔具有较短的特点,一般凝胶到定型有时数个小时就可完成,再加上不饱和聚酯在固化时系统内无多余的小分子逸出,结构较为紧密,因此不饱和聚酯树脂和其他热固性树脂相比具有最佳的室温接触成型的工艺性能。
引发剂用于不饱和聚酯树脂固化的引发剂与自由基聚合用引发剂一样,一般为有机过氧化合物。各类有机过氧化合物的特性,通常用活性氧含量,临界温度和半衰期等表示。
活性氧含量活性氧含量又称为有效氧含量。对于纯粹的过氧化物,活性氧含量是代表有机过氧化物纯度的指标。实际上,由于纯粹有机过氧化物贮存的不安定性,通常与惰性稀释剂如邻苯二甲酸二丁酯等混合配制,以利于贮存和运输。
临界温度过氧化物受热分解形成自由基时所需的最低温度称为临界温度。一般在临界温度以上才发生引发反应,这可从固化放热效应反映出来。临界温度是不饱和聚酯树脂固化时应用的工艺指标。
半衰期半衰期是指在给定温度条件下,有机过氧化物分解一半所需要的时间。实际应用上,可用下面两种方法表示半衰期,一种是给定温度下的时间,另一种是给定时间下的温度,它们都是引发剂活性的标志。显然,有机过氧化物的半衰期愈短,其活性也就愈大。
引发剂的种类虽然很多,但不饱和聚酯树脂固化最常用的主要是两种,即国产1 号引发剂和2 号引发剂。
1号引发剂是50%过氧化环已酮糊。过氧化环已酮是几种化合物的混合物,外观是白色粉沫或硬块,易溶于苯乙烯中得到透明的溶液。由1:1的过氧化环已酮和邻苯二甲酸二丁酯组成的 1号引发剂,呈糊状,久置后分层,上层为透明溶液,下层是白色沉淀物,使用时必须搅拌均匀成糊状。
过氧化甲乙酮具有与过氧化环已酮类似的特性,一般配成邻苯二甲酸二甲酯的50%溶液使用,该溶液无色透明,不含悬浮物,使用时不需要搅拌。
❼ 不饱和树脂的固化时间控制
通常来说,当温度来低于15度的话,自建议将树脂的温度提高至30度左右,再添加过氧化物。因为树脂温度过低,氧化物产生的自由基受到树脂粘度的增高影响固化时间,会造成树脂固化不均匀或不完全。
当树脂温度高于30度,室温也超过30度的话,建议通过减少过氧化物和促进剂的比例来调节固化时间。
当然可以根据使用的季节,跟树脂供应商沟通,让他们来直接调节树脂,例如分夏天型和冬季型两种型号。
❽ 不饱和树脂有哪些固化剂
按引发方式的不同,不饱和聚酯树脂固化类型可为三种:
热固化:靠外部加热使版固化剂释放游离基,从而引发树权脂固化的过程.(也称为热引发固化)
冷固化:在室温或固化温度不高的条件下,通过加入促进剂使固化剂释放游离基从而使树脂固化的过程.(也称为化学分解引发固化)
光固化:通过加入光敏剂,用紫外线作为能源,引发树脂交联固化的过程.(也称为光引发固化)
冷固化体系中常用的固化剂类型
1、 过氧化环己酮(是多种氢过氧化物的混合物)
过氧化环己酮溶解在二丁酯中,成为50%的糊状物,称为1#固化剂
2、过氧化二苯甲酰(是一种过氧化物,简称BPO)
过氧化二苯甲酰溶解在二丁酯中,成为50%的糊状物,称为2#固化剂
3、 过氧化甲乙酮(简称MEKP)
❾ 如何测不饱和树脂固化程度
一是“硬度法”,目前广泛应用的是一种“Barcol硬度计”,利用这种硬度计来测试固化树脂样品或制品的硬度。Barcol硬度是一个相对的比较指标,所谓Barcol硬度的数值,它是以硬度计上金属针插入固化树脂表面的深度为标志的,以金属针相同的金属材料作基准。从实验数据分析来看,树脂凝胶后经室温7天,硬度已趋于稳定,可以认为树脂固化已经完全,对特定应用能提供合适物理性能和化学性能。
二是“回弹法”,把小钢球从一定高度落向被测固化树脂表面,由于固化程度(交联程度)不同,树脂的刚性是不同的,所以回弹高度亦不同,回弹高度可表征固化程度。上述2种方法可统称为物理法,也称力学方法、机械方法。
三是“电学方法”,也属物理法,但完全不同。用电学方法测定树脂的固化程度。具体首先是介质损耗角正切值(tgδ)法,用这个方法可以观察到树脂固化的全过程,树脂在半小时以前tgδ呈现出极大值,这是凝胶的特征。是由于2种因素对tgδ的影响所致:一种是结构因素,由于树脂发生交联使tgδ减小;另一种是温度因素,凝胶时放热使tgδ上升。由于凝胶效应使温度上升对tgδ的影响,大于凝胶时微弱交联引起的影响、故出现峰值。凝胶以后随着固化程度(交联反应程度)的增加,tgδ减小至10天左右趋于稳定,表明树脂固化已经完全。用tgδ法测定树脂固化程度时,试样要求比较严格,所以该法宜用于实验室研究,不宜用于生产控制。电学方法的第2种方法是电阻法,这个方法可测定树脂固化的全过程,因介质的电阻与介质的漏电电流和极化电流有关,而极化电流与介质损耗一样,可以间接反映树脂固化程度。固化越完全、偶极运动能力越小,电阻值逐渐增大。由有关实验图可见,在经过200小时左右,电阻趋于稳定,表明固化已完全。能标准高,且必须经过德国船级社GL论证。两道“门槛”对国内树脂和纤维企业提出了极为严格的要求。
四是“玻璃钢传统”。国内玻璃钢复合材料技术水平的提高,特别是装备技术。江、浙、冀、鲁等省的SMC、缠绕、拉挤、人造石、模塑等设备不仅满足国内需求,还大量出口。装备技术的提升拉动了UPR的性能、品质的提高和中、高档树脂需求上升。
科宝化工专业经营乙烯基树脂、不饱和聚酯树脂及一些树脂辅料,如固化剂,促进剂,色浆,玻璃纤维布等,期待您的来信并提供技术支持,电话前面是0731,后面是8978加9107。
❿ 不饱和聚酯树脂的固化原理
具有粘性的可流动的不饱和聚酯树脂,在引发剂存在下发生自由基共聚合反应,而生成性能稳定的体型结构的过程称为不饱和聚酯的固化。
发生在线型聚酯树脂分子和交联剂分子之间的自由基共聚合反应,其反应机理同前述自由基共聚反应的机理基本相同,所不同的它是在具有多个双键的聚酯大分子(即具有多个官能团)和交联剂苯乙烯的双键之间发生的共聚,其最终结果,必然形成体型结构。
固化的阶段性
不饱和聚酯树脂的整个固化过程包括三个阶段:
凝胶——从粘流态树脂到失去流动性生成半固体状有弹性的凝胶;
定型——从凝胶到具有一定硬度和固定形状,可以从模具上将固化物取下而不发生变形;
熟化——具有稳定的化学、物理性能,达到较高的固化度。
一切具有活性的线型低聚物的固化过程,都可分为三个阶段,但由于反应的机理和条件不同,其三个阶段所表现的特点也不同。不饱和聚酯树脂的固化是自由基共聚反应,因此具有链锁反应的性质,表现在三个阶段上,其时间间隔具有较短的特点,一般凝胶到定型有时数个小时就可完成,再加上不饱和聚酯在固化时系统内无多余的小分子逸出,结构较为紧密,因此不饱和聚酯树脂和其他热固性树脂相比具有最佳的室温接触成型的工艺性能。
引发剂
用于不饱和聚酯树脂固化的引发剂与自由基聚合用引发剂一样,一般为有机过氧化合物。各类有机过氧化合物的特性,通常用活性氧含量,临界温度和半衰期等表示。
活性氧含量
活性氧含量又称为有效氧含量。对于纯粹的过氧化物,活性氧含量是代表有机过氧化物纯度的指标。实际上,由于纯粹有机过氧化物贮存的不安定性,通常与惰性稀释剂如邻苯二甲酸二丁酯等混合配制,以利于贮存和运输。
临界温度
过氧化物受热分解形成自由基时所需的最低温度称为临界温度。一般在临界温度以上才发生引发反应,这可从固化放热效应反映出来。临界温度是不饱和聚酯树脂固化时应用的工艺指标。
半衰期
半衰期是指在给定温度条件下,有机过氧化物分解一半所需要的时间。实际应用上,可用下面两种方法表示半衰期,一种是给定温度下的时间,另一种是给定时间下的温度,它们都是引发剂活性的标志。显然,有机过氧化物的半衰期愈短,其活性也就愈大。
引发剂的种类虽然很多,但不饱和聚酯树脂固化最常用的主要是两种,即国产1 号引发剂和2号引发剂。
1号引发剂是50%过氧化环已酮糊。过氧化环已酮是几种化合物的混合物,外观是白色粉沫或硬块,易溶于苯乙烯中得到透明的溶液。由1:1的过氧化环已酮和邻苯二甲酸二丁酯组成的1号引发剂,呈糊状,久置后分层,上层为透明溶液,下层是白色沉淀物,使用时必须搅拌均匀成糊状。
过氧化甲乙酮具有与过氧化环已酮类似的特性,一般配成邻苯二甲酸二甲酯的50%溶液使用,该溶液无色透明,不含悬浮物,使用时不需要搅拌。