弱酸树脂密度
弱碱性阴离子交换树脂可以去除水中强酸性阴离子,比如硫酸根,氯根等,但是因版为没权有中性盐分解能力,所以不能像强碱阴树脂那样具有去除弱酸性阴离子(比如硅酸根等),所以没有除硅性能。
但是弱碱阴树脂也有很多特点,比如其拥有较好的抗有机物污染性能,比强碱阴树脂拥有更大的交换容量,所以在强弱型联合应用工艺中,置放在强碱阴树脂之前,很好的保护了后置强碱阴树脂,并确保强碱阴树脂尽量少受到污染,保留足够的交换当量,确保二级净化交换和除硅能力。另外也普遍用于食品发酵行业的脱色离交,用于电镀废水中去除六价铬,用于废水溶液处理的去处COD工艺中。丙烯酸弱碱阴树脂还能用于高含盐量的有机废水中。应该说,弱碱阴树脂是树脂产品中非常有特点的一款产品,也是我从事这个行业以来,个人最最喜欢的产品之一。
㈡ 强酸树脂和弱酸树脂
强酸树脂和弱酸树脂的异同:
1)因为弱酸树脂的工交容量比强酸树脂高得多,因此利用弱回酸树脂会增加系答统的总交换容量,但因弱酸树脂只能吸着水中的碳酸盐硬度,所以在水的化学除盐中弱酸树脂必须与强酸树脂联合使用。当联合应用弱、强酸树脂时,则可既增加了交换器的总工交容量,而又能控制了交换后的出水水质。
2)弱酸树脂在交换过程中始终存在着离子泄漏,而且随着弱酸树脂层的失效程度的增加,离子的泄漏量会随时不断的加大。
3)因为弱酸树脂极容易吸着水中的H+,所以再生时它可利用强酸树脂的再生液中的余酸来进行再生,因而可以合理的利用和降低再生酸耗。同时又可减少再生排出液对环境的污染。
4)在联合应用中,因为前面的弱酸树脂已经将水中碳酸盐硬度去除,改善了强酸树脂的进水水质,使强酸树脂的工交容量可以有更高的发挥。
5)强酸和弱酸树脂联合应用时,弱酸、强酸树脂的装填量的计算原则为,弱酸树脂应按吸着进水中的碳酸盐硬度所须的量,而强酸树脂则按吸着进水中其他剩余阳离子的量来计算。
㈢ 阳离子交换树脂的物理性质
1、离子交换树脂颗粒尺寸:
离子交换树脂一般呈颗粒状,树脂颗粒的尺寸是非常重要的,如果树脂颗粒尺寸大的话,反应速度就比较慢一些,而树脂颗粒尺寸小,反应速度较快,但是液体通过的阻力也比较大,需要较高的工作压力,所以树脂颗粒的大小一般是经过严格筛选才能够确定,大多数的树脂的尺寸的有效粒径在0.4~0.6mm左右。
2、离子交换树脂的密度:
离子交换树脂的密度有两种,一种是树脂干燥时的密度,被称为真密度,另外一种是树脂湿润时的密度,被称为视密度。树脂的密度和树脂的交联度是息息相关的,交联度高的树脂密度一般也较高,而强酸性或强碱性的树脂要比弱酸性或弱碱性树脂的密度高一些。
3、离子交换树脂的溶解性:
离子交换树脂一般情况下是不溶性物质,不过树脂在合成的过程中,可能会加入一些聚合度较低的物质,就会导致树脂在工作时将这些物质溶解出来,根据统计交联度较低和含活性基团多的树脂,溶解倾向较大,我们在选择树脂时也要考虑到树脂溶解性能不能符合自己的要求。
4、离子交换树脂的耐用性:
离子交换树脂在运输、储存、使用时,树脂可能会发生摩擦、膨胀或者收缩等变化,长期使用后,还可以会发生树脂破损等现象,所以在选择树脂时,树脂的机械强度和耐磨性也是非常重要的一点,一般交联度低的树脂,耐磨性也较低。
5、离子交换树脂的膨胀度:
离子交换树脂体内本身就含有一定的水分,还有其他的亲水基团,使用树脂在与水接触时,就会发生树脂膨胀的现象,树脂在转型时,也会发生膨胀,比如树脂由氢型转为钠型时,树脂就会发生膨胀,一般情况下,树脂的交联度越低,膨胀度就越大,所以在树脂在装填时需要根据树脂膨胀的大小,确认树脂装填的高度。
6、离子交换树脂的水分:
一定离子型态的树脂其颗粒内所含的平衡水量是该树脂的固有特性。同种树脂,不同的离子型态,其含水量也是不同的。为此,国家标准也规定了各种树脂在特定的离子型态下的含水量。树脂在使用的过程中,随着各种因素对树脂的损害,其含水量也会发生变化。因此,树脂含水量的变化大小,也是判断树脂受损性程度的依据之一。
详情点击:网页链接
㈣ 酚酫树脂密度
酚醛树脂的密度为1.05-1.15g/cm3。 酚醛树脂也叫电木,又称电木粉。原为无色或黄褐色透明物,市场销售往往加着色剂而呈红、黄、黑、绿、棕、蓝等颜色,有颗粒、粉末状。耐弱酸和弱碱,遇强酸发生分解,遇强碱发生腐蚀。不溶于水,溶于丙酮、酒精等有机溶剂中。苯酚醛或其衍生物缩聚而得。
㈤ 弱酸树脂与强酸树脂应用时有哪些交换特性
弱酸型阳树脂肯定优于强酸型阳树脂,从制水工艺上讲,主要是制水量大,工况稳定等特点,同时也节约了再生剂量,更重要的是减少了排废量
㈥ 弱酸树脂和碳酸氢钠!水质工程 专业人士进!在线等答案!!
反应不反应取决于树脂的离子型态,如果是氢型的是可以反应的
㈦ d113fc弱酸阳树脂交换容量多少
质量全交换容量:大于11mmol/g;
体积全交换容量:大于4.4mmol/ml;
工作交换容量:一般按1600mmol/L作为参内考数据。虽然理容论上可以达到2000mmol/L以上,但是在实际使用过程中,树脂失效后不可能得到完全再生,所以设计参数一般采用1600为准。
㈧ 强酸强碱弱酸弱碱树脂的优缺点各是什么
捡到了,各有不同,因为他们弱酸弱碱性的话,它的优缺点可以通过它的一种事物来改变它的影
㈨ 弱酸阳离子安换树脂软化为什么要转成Na型
第一个阶段是20世纪60年代的开创时期。这个时期电渗析是我国最早得到推广应用的膜分离过程,其应用领域涉及苦咸水淡化;电厂锅炉补给水预除盐等。第二个阶段是20世纪70年代。这一时期,电渗析、反渗透、超滤和微滤等各种膜和相应组件、装置都在研究中,或已开发出来,除电渗析外,其它膜组件仍未得到应用。第三个阶段是20世纪80年代以后。这一时期我国膜分离技术跨入应用阶段,一些技术上较为成熟的膜过程开始得到应用。在自己研制成功的醋酸纤维素(CA)膜于复合膜生产装置的基础上,又相继引进了外国有关公司的反渗透膜生产线。反渗透技术已在我国电厂锅炉补给水预除盐、超纯水制造、海水和苦咸水淡化等方面大规模推广应用,并取得很好的技术效益和经济效益。因此,提高膜预处理的综合利用研究意义重大且大有前途。
自超滤膜预处理后,多年来国内外研究人员都一直在探索预处理的新途径。到1995年12月,全世界RO淡化工厂产水量达7293079m3/d,占总淡化生产量的35%,占当年世界淡化市场88%。RO技术将成为21世纪淡化技术的主要方法。
技术实现要素:
本发明正是基于以上技术问题,提供一种以弱酸阳离子树脂交换酸化软化方法。该方法主要针对河水而言,由于河水中含有较多的生活污水,而本发明通过设计合理的工艺流程,提高纯水的回收率,并简化原水的处理过程,降低水耗,使以河水制纯水具有优越的经济效益。
本发明的技术方案为:
一种以弱酸阳离子树脂交换酸化软化方法,其包括如下步骤:
(1)将待处理的水放入已放置了絮凝剂的澄清池中,除去大部分胶质物质;再将水经过过滤器,进一步除去胶质物质;
(2)将经过步骤(1)处理后的水通过弱酸阳离子树脂交换床,使水中的阳离子(如Ca2+、Mg2+、Na+等)被树脂吸附,树脂中的H+进入水中,与水中的阴离子组成相应的无机酸,反应式如下:
弱酸阳离子树脂交换床失效后,向其添加无机酸使其再生,且将弱酸阳离子树脂上部的晶型变为H+型,将弱酸阳离子树脂的下部的晶型变为Na+型,无机酸的加入量与水的质量比为1.01-1.015。作为优选,所述的无机酸为硝酸、盐酸或硫酸。弱酸阳离子树脂交换床再生的时间不超过1h,再生的水温为30- 45℃,压力为常压,无机酸的流量不超60m3/h。
待水在弱酸阳离子树脂交换床交换完成后,用脱盐水对弱酸阳离子树脂进行置换,置换的温度为30-45℃,压力为常压,交换时间不超过1h,脱盐水流量不超60m3/h。
待脱盐水置换后,用清水对弱酸阳离子树脂进行清洗;清洗的温度小于 45℃,压力为常压,清洗时间不超过1h,清水流量不超80m3/h,弱酸阳离子树脂交换床中的清洗出水电导小于1200μs/cm。
(3)将经过弱酸阳离子树脂,除去大部分阳离子后并携带H+的水进入保安过滤器和反渗透RO膜除去绝大部分离子;再将经过RO膜除去大部分离子后的水进入强酸阳离子交换床,进一步除去阳离子;经过RO膜除去大部分离子后,因进入RO膜的水带酸性,CO32-大部分以游离CO2存在,产生的游离二氧化碳经脱碳风机除去。
(4)将经步骤(3)中除去阳离子的水进入阴离子交换床,除去大部分阴离子,特别是硅酸根离子,除去大部分阴离子,得到除盐水;
(5)将步骤(4)中得到的除盐水再经过混床进一步除盐,混床相当于 1000-2000个复合床对除盐水进一步除盐,得到精制水。