nka2树脂对邻硝基苯酚的吸附
Ⅰ 大孔吸附树脂型号有哪些
这是我自己总结的 一 大孔树脂 1.原理:大孔吸附树脂是以苯乙烯和丙酸酯为单体,加入乙烯苯为交联剂,甲苯、二甲苯为致孔剂,它们相互交联聚合形成了多孔骨架结构. 不同于以往使用的离子交换树脂,大孔吸附树脂为吸附性和筛选性原理相结合的分离材料. 吸附性是由于范德华力或产生氢键的结果. 筛选性是由于其本身多孔性结构所决定. 因此,有机化合物根据吸附力的不同及分子量的大小,在树脂的吸附机理和筛分原理作用下实现分离. 2.类型按其极性和所选用的单体分子结构分为: (1)非极性大孔树脂 苯乙烯、二乙烯苯聚合物,也称芳香族吸附剂.(如HPD-100,D-101等) (2)中等极性大孔树脂 聚丙烯酸酯型聚合物,以多功能团的甲基丙烯酸酯作为交联剂,也称脂肪族吸附剂. (3)极性大孔树脂 含硫氧、酰胺基团,如丙烯酰胺. (4)强极性大孔树脂 含氮氧基团,如氧化氮类. 3 选择选择树脂要综合各方面的因素(如:待分离化合物的分子大小、所含特有基团等)适当孔径下,应有较高的比表面积;具有适宜的极性;与被吸附物质有相似的功能基. 二 聚酰胺 1.原理:聚酰胺(polyamide,PA)是由酰胺聚合而成的一类高分子物质,又叫尼龙、锦纶色谱中常用的聚酰胺有:尼龙-6(己内酰胺聚合而成)和尼龙-66(己二酸与己二胺聚合而成).既亲水又亲脂,性能较好,水溶性物质和脂溶性物质均可分离.锦纶11,1010的亲水性较差,不能使用含水量高的溶剂系统.原理暂时有2种: ①氢键吸附原理:酚、酸的羟基与聚酰胺中羰基形成氢键;芳香硝基、醌类化合物的硝基或羟基(醌)与聚酰胺中游离氨基形成氢键;脱吸附通过溶剂分子形成新氢键取代原有氢键而完成. ②双重层析原理:聚酰胺既有非极性的脂肪键,又有极性的酰胺键. 当用含水极性溶剂作流动相时,聚酰胺作为非极性固定相,其色谱行为类似反相分配色谱,所以苷比苷元容易洗脱. 当用非极性氯仿-甲醇作为流动相时,聚酰胺则作为极性固定相,其色谱行为类似正相分配色谱,所以苷元比其苷容易洗脱. 2.适用:聚酰胺层析可用于黄酮、酚类、有机酸、生物碱、萜类、甾体、苷类、糖类、氨基酸衍生物、核苷类等的化合物的分离,尤其是对黄酮类、酚类、醌类等物质的分离远比其它方法优越. 特点:对黄酮等物质的层析是可逆的;分离效果好,可分离极性相近的类似物,其柱层析的样品容量大,适用于制备分离.
Ⅱ 离子交换树脂吸附的原理
离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。
阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为 2R—SO3H+Ca2+——(R—SO3)2Ca+2H+
这也是硬水软化的原理。
阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团。它们在水中能生成OH-离子,可与各种阴离子起交换作用,其交换原理为
R—N(CH3)3OH+Cl- ——R—N(CH3)3Cl+OH-
由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱进行洗涤,可恢复到原状态而重复使用,这一过程称为再生。阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。
离子交换树脂的用途很广,主要用于分离和提纯。例如用于硬水软化和制取去离子水、回收工业废水中的金属、分离稀有金属和贵金属、分离和提纯抗生素等。
Ⅲ 使用离子交换法用到的离子交换树脂,哪些树脂对锌的吸附效果较好
在pH=4.0,吸附温度25℃下,向50mLZn2+浓度为/L的电镀废水中,加入1.0g含醚键离子交换树脂,其他条件不变,吸附处理90min。测定结果表明,含醚键离子交换树脂对Zn2+的饱和吸附量为93.8mg/g,对Zn2+具有较好的吸附性能。
控制溶液的pH值为4.0,吸附温度为25℃,取Zn2+浓度为60mg/L的电镀废水50mL,分别加入60mg含醚键离子交换树脂,并保持其他操作条件不变,考察不同吸附时间对Zn2+去除率的影响见表3。由表3可知,随着吸附时间的延长,Zn2+去除率增大;当吸附时间大于80min时,Zn2+去除率达98.0%以上,且变化平稳。
控制溶液的pH=4.0,吸附时间为90min,取Zn2+浓度为60mg/L的电镀废水50mL,加入60mg含醚键离子交换树脂,并保持其他操作条件不变,考察不同温度对Zn2+去除率的影响,结果见表4。由表4可知,吸附温度在5~25℃内时,随温度升高,Zn2+去除率增大,当温度大于25℃时,Zn2+去除率增大不明显。
结论
(1)含醚键离子交换树脂对Zn2+具有很好的吸附作用。在25℃,pH值为4.0,吸附时间为90min,Zn2+浓度为60mg/L的电镀废水中,按Zn2+与树脂的质量比为1∶20投加树脂进行处理,Zn2+的去除率均达98%以上。
(2)pH值是影响吸附的重要因素,在pH<4.0的条件下,含醚键离子交换树脂对Zn2+吸附不力,Zn2+去除率较小;pH>4.0时,Zn2+去除率较大,均达97%以上,树脂对Zn2+的吸附效果较好;树脂对Zn2+吸附的最佳pH值为4.0。
(3)含醚键离子交换树脂对电镀废水中的Zn2+具有很好的吸附效果。含Zn2+浓度为28.5mg/L,pH值为5.9的电镀废水经含醚键离子交换树脂吸附处理后,废水中Zn2+的含量显著低于国家一级排放标准浓度。
(4)含醚键离子交换树脂吸附Zn2+后,经过脱附处理可重复使用。
Ⅳ 想请教一下大孔吸附树脂买来后只是在碱液中存放,并无使用,已有三年,对树脂的吸附能力有影响吗
有影响,碱液的腐蚀和碱的析出不可忽视
Ⅳ 树脂对 重金属的去除作用是离子交换和吸附作用两者的区别是什么
离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导应用
1)水处理
水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。
2)食品工业
离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。
3)制药行业
制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。
4)合成化学和石油化学工业
在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。
甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。
5)环境保护
离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。
6)湿法冶金及其他
离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。
其他补充:
离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。
在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。
离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。
离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。
离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。
离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。
广泛的应用于水处理领域。
Ⅵ 对大孔树脂再生时,加大了酸的用量,现在发现吸附能力减弱,请问是否与酸浓度提高有关系
关系不大,树脂失效。
Ⅶ 化工废水中的对硝基苯酚易被氧化吗,可生化性怎样望高手指点
污水中最难降解的物质之一,主要显毒性。
如果用微生物法,不宜直接用好氧工艺,只宜专采用厌氧属方法先预处理。
毒性很大,厌氧工艺其短期的微生物接触浓度(冲击负荷)不宜超过100mg/L(<100),长期驯化后,长期微生物接触浓度应<200mg/L。
——这个数据是刚帮你查到的(《高浓度有机废水处理技术与工程应用》冶金出版社 王绍文)
因为有毒,所以BOD测不准,谈不上准确可生化比的问题了。
供你参考毒性(由小变大依次是):苯<苯酚<甲酚(邻、间、对)<硝基苯(邻、间、对)<3,5-二甲酚<二氯酚(2,4、2,6)、2,4硝基酚<对硝基酚<五氯酚
可见你这个属于是颇具毒性的污染物质了。
通常不直接用生化法处理,预处理可以考虑用物化法,比如铁碳还原+厌氧+耗氧,萃取处理法回收,活性炭吸附法,磺化媒吸附法,树脂吸附法等等。
Ⅷ 哪种离子交换树脂对钒的吸附容量大
离子交换树脂法应用于电镀废水、酸洗废水或电子生产领域废水处理,根据水溶液的版PH值,可以选权择多款树脂,比如强酸性阳树脂(PH要求较苛刻,吸附范围相对较窄),大孔弱酸树脂(吸附能力大,但对PH有明确要求),螯合树脂(吸附力强,对PH应用范围广,但相对于前两者价格较高,但因为其双羧基的抓取能力,对二价金属离子的选择性吸附能力颇佳)。
目前国内外电子生产领域及电镀废水等,普遍存在偷排废水或缴费交由环保部门污水处理站集中处理,其实这些废水通过树脂吸附处理后,完全可以变废为宝。本公司拥有以上三款产品及应用工艺,如用户感兴趣,可以进一步交谈。螯合树脂对二价金属离子的选择性吸附,可以参照附件中资料。
Ⅸ 为什么离子交换树脂对有机大分子吸附时会存在假平衡
(如该数据帧为广播/组播帧则转发至所有端口)
消除回路:
当交换机包括一回个冗余回路时,答以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。
交换机除了能够连接同种类型的网络之外,还可以在不同类型的网络(如以太网和快速以太网)之间起到互连作用。如今许多交换机都能够提供支持快速以太网或FDD
Ⅹ 请问离子交换树脂对离子的吸附会有什么选择吗
离子交换树脂对各种反离子的亲和力往往不一样.一种离子交换树脂常常容易取得某些反离版子权,在取得这类反离子后要把它置换下来就比较困难,反之,它对另一些离子很难取得,但却比较容易置换下来.这种性能称为离子交换树脂的选择性.
阳离子交换树脂的选择顺为,Fe>Al>Ba>Pb>Sr>Ca>Ni
>Cd>Cu>Co>Zn >Mg>K>NH>Na>Li
阴树脂的选择性为,强碱树脂SO>NO>CI>F>HCO>HSIO>
弱碱树脂OH>SO>NO>CI>HCO