树脂的三态
⑴ 丙烯酸树脂!急!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
这个问题还比较多啊!哈哈
1.水乳性高弹性丙烯酸树脂这在市场上还是有的,价格贵点而已;
2水乳性 跟 高弹性 是两种特性么?
高分子材料与我们常说的气态 液态 固态不同,它只有三态,分别为玻璃态 高弹态 和黏流态,而我们常见的玻璃态,如塑料产品胶盆,手机外壳等;高弹态的如汽车轮胎;黏流态主要集中在高分子中分子量相对小一些,如油漆油墨等,当然注塑溶胶后也是黏流态。
简单的说高弹性就是像有点弹簧的反推力,从微观上说就是高分子链受到外力后,有一个反弹的力;
水乳性是指高分子中一类材料,在投入水中后,通过搅拌等外力,将材料以颗粒的形式溶于水中,这个叫法的由来是由高分子四大合成方式中的乳化反应得来,这个不详说了
3.水乳性丙烯酸树脂 跟 水溶性丙烯酸树脂有什么关系,哪种比较好?
这个好坏的方面比较太宽了吧!
水乳性丙烯酸树脂性能与水溶性丙烯酸树脂差不多,关键看牌子(这个没得解析)
水乳性丙烯酸树脂相对没那么环保,价格相对便宜点
水溶性丙烯酸树脂环保,国家都提倡用,建议使用还是环保好
4.这个我就不能回答你了,个人理解不同,答案也不同,不过像山东的东营等地还是做的比较好的
祝你愉快
⑵ 物质为什么会有三种状态*&*
其实物质有 10 种状态,在这里我说说你问的3种,固态、液态、气态
================
详细解释:
在自然界中,我们看到物质以各种各样的形态存在着:花虫鸟兽、山河湖海、不同肤色的人种、各种美丽的建筑……大到星球宇宙,小到分子、原子、电子等极微小的粒子,真是千姿百态斗奇争艳。大自然自身的发展,造就了物质世界这种绚丽多彩的宏伟场面。物质具体的存在形态有多少,这的确是难以说清的。但是,经过物理学的研究,千姿百态的物质都可以初步归纳为两种基本的存在形态:“实物”和“场”。
“实物”具有的共同特点是:质量集中在某一空间,一般有比较确定的界面(气体的界面虽然模糊,但它又是由一个个实物粒子构成)。本文开头所举的各例都属于实物。
“场”则是看不见摸不着的物质,它可以充满全部空间,它具有“可入性”。例如大家熟知的电磁波,它可以将电台天线发射的信号通过空间传送到千家万户的收音机或电视机。可以概括地说,“场”是实物之间进行相互作用的物质形态。
什么是“物态”呢?日常所知的固态、液态和气态就是三种“物态”。为什么要有“物态”的概念?因为实物的具体形态太多了,将它们归纳一下能否分成较少的几类?这就产生了“物态”的概念。“物态”是按属性划分的实物存在的基本形态,它都表现为大量微小物质粒子作为一个大的整体而存在的集合状态。以往人们只知道有固态、液态和气态三种物态,随着科学的发展,在大自然中又发现了多种“物态”。入类迄今知道的“物态”已达10余种之多。
日常生活中最常见的物质形态是固态、液态和气态,从构成来说这类状态都是由分子或原子的集合形式决定的。由于分子或原子在这三种物态中运动状况不同,而使我们看到了不同的特征。
1.固态
严格地说,物理上的固态应当指“结晶态”,也就是各种各样晶体所具有的状态。最常见的晶体是食盐(化学成份是氯化钠,化学符号是NaCl)。你拿一粒食盐观察(最好是粗制盐),可以看到它由许多立方形晶体构成。如果你到地质博物馆还可以看到许多颜色、形状各异的规则晶体,十分漂亮。物质在固态时的突出特征是有一定的体积和几何形状,在不同方向上物理性质可以不同(称为“各向异性”);有一定的熔点,就是熔化时温度不变。
在固体中,分子或原子有规则地周期性排列着,就像我们全体做操时,人与人之间都等距离地排列一样。每个人在一定位置上运动,就像每个分子或原子在各自固定的位置上作振动一样。我们将晶体的这种结构称为“空间点阵”结构。
2.液态
液体有流动性,把它放在什么形状的容器中它就有什么形状。此外与固体不同,液体还有“各向同性”特点(不同方向上物理性质相同),这是因为,物体由固态变成液态的时候,由于温度的升高使得分子或原子运动剧烈,而不可能再 保持原来的固定位置,于是就产生了流动。但这时分子或原子间的吸引力还比较大,使它们不会分散远离,于是液体仍有一定的体积。实际上,在液体内部许多小的区域仍存在类似晶体的结构——“类晶区”。流动性是“类晶区”彼此间可以移动形成的。我们打个比喻,在柏油路上送行的“车流”,每辆汽车内的人是有固定位置的一个“类晶区”,而车与车之间可以相对运动,这就造成了车队整体的流动。
3.气态
液体加热会变成气态。这时分子或原子运动更剧烈,“类晶区”也不存在了。由于分子或原子间的距离增大,它们之间的引力可以忽略,因此气态时主要表现为分子或原子各自的无规则运动,这导致了我们所知的气体特性:有流动性,没有固定的形状和体积,能自动地充满任何容器;容易压缩;物理性质“各向同性”。
显然,液态是处于固态和气态之间的形态。
⑶ 物体除了常见的三态外,还有什么态
等离子体,英文名Plasma,
等离子状态使指物质原子内的电子在高温下脱离原子核的吸引,使物质呈为正负带电粒子状态存在。
在日常生活中,我们会遇到各种各样的物质.根据它们的状态,可以分为三大类,即固体、液体和气体.例如钢铁是固体,水是液体,而氧气是气体.任何一种物质,在一定条件下都能在这三种状态之间转变.以水为例,在一个标准大气压下,当温度降到0℃以下时,水开始变成冰.而当温度升到100℃时,水就会沸腾而变成水蒸汽.
如果温度不断升高,气体又会怎样变化呢?科学家告诉我们,这时构成分子的原子发生分裂,形成为独立的原子,如氮分子(N2)会分裂成两个氮原子(N),我们称这种过程为气体分子的离解.如果再进一步升高温度,原子中的电子就会从原子中剥离出来,成为带正电荷的原子核(称为离子)和带负电荷的电子,这个过程称为原子的电离.当这种电离过程频繁发生,使电子和离子的浓度达到一定的数值时,物质的状态也就起了根本的变化,它的性质也变得与气体完全不同.为区别于固体、液体和气体这三种状态,我们称物质的这种状态为物质的第四态,又起名叫等离子体.
⑷ 高分子化合物是指什么
高分子化合物的定义:高分子化合物简称高分子,又叫大分子,一般指相对分子质量高达几千到几百万的化合物,绝大多数高分子化合物是许多相对分子质量不同的同系物的混合物,因此高分子化合物的相对分子质量是平均相对分子量。高分子化合物是由千百个原子以共价键相互连接而成的,虽然它们的相对分子质量很大,但都是以简单的结构单元和重复的方式连接的。
高分子化合物的分类:
1、按来源分类:按来源可把高分子分成天然高分子和合成高分子两大类。
2、按性能分类:可把高分子分成塑料、橡胶和纤维三大类。
塑料按其热熔性能又可分为热塑性塑料(如聚乙烯、聚氯乙烯等)和热固性塑料(如酚醛树脂、环氧树脂、不饱和聚酯树脂等)两大类。前者为线型结构的高分子,受热时可以软化和流动,可以反复多次塑化成型,次品和废品可以回收利用,再加工成产品。后者为体型结构的高分子,一经成型便发生固化,不能再加热软化,不能反复加工成型,因此,次品和废品没有回收利用的价值。塑料的共同特点是有较好的机械强度(尤其是体形结构的高分子),作结构材料使用。
纤维又可分为天然纤维和化学纤维。后者又可分为人造纤维(如粘胶纤维、醋酸纤维等)和合成纤维(如尼龙、涤纶等)。人造纤维是用天然高分子(如短棉绒、竹、木、毛发等)经化学加工处理、抽丝而成的。合成纤维是用低分子原料合成的。纤维的特点是能抽丝成型,有较好的强度和挠曲性能,作纺织材料使用。
橡胶包括天然胶和合成橡胶。橡胶的特点是具有良好的高弹性能,作弹性材料使用。
3、按用途分类:可分为通用高分子,工程材料高分子,功能高分子,仿生高分子,医用高分子,高分子药物,高分子试剂,高分子催化剂和生物高分子等。
塑料中的“四烯”(聚乙烯、聚丙烯、聚氯乙烯和聚苯乙烯),纤维中的“四纶”(锦纶、涤纶、腈纶和维纶),橡胶中的“四胶”(丁苯橡胶、顺丁橡胶、异戊橡胶和乙丙橡胶)都是用途很广的高分子材料,为通用高分子。
工程塑料是指具有特种性能(如耐高温、耐辐射等)的高分子材料。如聚甲醛、聚碳酸酯、聚砚、聚酰亚胺、聚芳醚、聚芳酰胺和含氟高分子、含硼高分子等都是较成熟的品种,已广泛用作工程材料。
离子交换树脂、感光性高分子、高分子试剂和高分子催化剂等都属功能高分子。
医用高分子、药用高分子在医药上和生理卫生上都有特殊要求,也可以看作是功能高分子。
4、按主链结构分类:可分为碳链高分子、杂链高分子、元素有机高分子和无机高分子四大类。
碳链高分子的主链是由碳原子联结而成的。
杂链高分子的主链除碳原子外,还含有氧、氮、硫等其他元素,如:如聚酯、聚酰胺、纤维素等。易水解。
元素有机高分子主链由碳和氧、氮、硫等以外其他元素的原子组成,如硅、氧、铝、钛、硼等元素,但侧基是有机基团,如聚硅氧烷等。
无机高分子是主链和侧链基团均由无机元素或基团构成的。天然无机高分子如云母,水晶等,合成无机高分子如玻璃。
高分子化合物的系统命名比较复杂,实际上很少使用,习惯上天然高分子常用俗名。合成高分子则通常按制备方法及原料名称来命名,如用加聚反应制得的高聚物,往往是在原料名称前面加个“聚”字来命名。例如,氯乙烯的聚合物称为聚氯乙烯,苯乙烯的聚合物称为聚苯乙烯等。如用缩聚反应制得的高聚物,则大多数是在简化后的原料名称后面加上“树脂”二字来命名。例如,酚醛树脂、环氧树脂等。加聚物在未制成制品前也常有“树脂”来称呼。例如,聚氯乙烯树脂,聚乙烯树脂等。此外,在商业上常给高分子物质以商品名称。例如,聚己内酰胺纤维称为尼龙—6,聚对苯二甲酸乙二酯纤维称为涤纶,聚丙烯腈纤维称为腈纶等。
高分子化合物的特点:高分子同低分子比较,具有如下几个特点。
1、从相对分子质量和组成上看,高分子的相对分子质量很大,具有“多分散性”。大多数高分子都是由一种或几种单体聚合而成。
2、从分子结构上看,高分子的分子结构基本上只有两种,一种是线型结构,另一种是体型结构。线型结构的特征是分子中的原子以共价键互相连接成一条很长的卷曲状态的“链”(叫分子链)。体型结构的特征是分子链与分子链之间还有许多共价键交联起来,形成三度空间的网络结构。这两种不同的结构,性能上有很大的差异。
3、从性能上看,高分子由于其相对分子质量很大,通常都处于固体或凝胶状态,有较好的机械强度;又由于其分子是由共价键结合而成的,故有较好的绝缘性和耐腐蚀性能;由于其分子链很长,分子的长度与直径之比大于一千,故有较好的可塑性和高弹性。高弹性是高聚物独有的性能。此外,溶解性、熔融性、溶液的行为和结晶性等方面和低分子也有很大的差别。
高分子化合物的结构:
高分子的分子结构可以分为两种基本类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。第二种是体型结构,具有这种结构的高分子化合物称为体型高分子化合物。此外,有些高分子是带有支链的,称为支链高分子,也属于线型结构范畴。有些高分子虽然分子链间有交联,但交联较少,这种结构称为网状结构,属体型结构范畴。
在线型结构(包括带有支链的)高分子物质中有独立的大分子存在,这类高聚物的溶剂中或在加热熔融状态下,大分子可以彼此分离开来。而在体形结构(分子链间大量交联的)的高分子物质中则没有独立的大分子存在,因而也没有相对分子质量的意义,只有交联度的意义。交联很少的网状结构高分子物质也可能被分离的大分子存在 。
两种不同的结构,表现出相反的性能。线型结构(包括支链结构)高聚物由于有独立的分子存在,故具有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。体型结构高聚物由于没有独立大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。因此从结构上看,橡胶只能是线型结构或交联很少的网状结构的高分子,纤维也只能是线型的高分子,而塑料则两种结构的高分子都有。
高分子化合物的结构简式的书写:
1、加聚物结构简式的书写方法:书写加聚物结构简式时,将链节写在方括号内,将聚合度写在方括号的右下角,用横线“—”表示端基。
2、缩聚物结构简式的书写方法:书写缩聚物结构简式时,将链节写在方括号内,聚合度写在方括号的右下角,并在方括号外侧写出链节余下的端基原子或原子团。
高分子化合物的合成:
合成高分子化合物最基本的反应有两类:一类叫缩合聚合反应(简称缩聚反应),另一类叫加成聚合反应(简称加聚反应)。这两类合成反应的单体结构、聚合机理和具体实施方法都不同。
缩聚反应
缩聚反应指具有两个或两个以上官能团的单体,相互缩合并产生小分子副产物(水、醇、氨、卤化氢等)而生成高分子化合物的聚合反应。如:
单体中对苯二甲酸和乙二醇各有两个官能团,生成大分子时,向两个方向延伸,得到的是线型高分子。
苯酚和甲醛虽然是单官能团化合物,但它们反应的初步产物是多官能团的,这些多官能团分子缩聚成线型或体型的高聚物,即酚醛树酯。
加聚反应
加聚反应是指由一种或两种以上单体化合成高聚物的反应,在反应过程中没有低分子物质生成,生成的高聚物与原料物质具有相同的化学组成,其相对分子质量为原料相对分子质量的整改数倍,仅由一种单体发生的加聚反应称为均聚反应。例如,氯乙烯合成聚氯乙烯:
由两种以上单体共同聚合称为共聚反应。例如,苯乙烯与甲基丙烯酸甲酯共聚:
共聚产物称为共聚物,其性能往往优于均聚物。因此,通过共聚方法可以改善产品性能。
加聚反应具有如下两个特点:
(1)加聚反应所用的单体是带有双键或叁键的不饱和键和化合物。例如,乙烯、丙烯、氯乙烯、苯乙烯、丙烯腈、甲基丙烯酸甲酯等,者是常用的重要单体,加聚反应发生在不饱和键上。
(2)加聚反应是通过一连串的单体分子间的互相加成反应来完成的:
而且反应一旦发生,便以连锁反应方式很快进行下去得到高分子化合物(通常称为加聚物)。相对分子质量增长几乎与时间无关,但单体转化率则随同时间而增大。
上述两个特点就是加聚反应和缩聚反应最基本的区别。
加聚反应根据反应活性中心的不同可以分为自由基加聚反应和离子型加聚反应两大类。
高分子化合物的命名:
高分子化合物的系统命名方法,比较复杂,在实际中使用不多,常用的是习惯命名法。
天然高分子化合物
天然高分子化合物,常用俗名,如,淀粉、蛋白质、橡胶、纤维素,等等。
合成高分子化合物
合成高分子化合物,通常按照制备方法和原料名称来命名。
1、加聚反应制得的高分子化合物
加聚反应制得的高分子化合物,其命名习惯上是在原料名称之前,加一个“聚”字。如,氯乙烯的聚合物,称为聚氯乙烯;四氟乙烯的聚合物,称为聚四氟乙烯;有机玻璃,是由甲基丙烯酸甲酯通过加聚反应制得的,故学名为聚甲基丙烯酸甲酯。
2、缩聚反应制得的高分子化合物
缩聚反应制得的高分子化合物,其命名习惯上是在原料名称之后,加“树脂”二字。如,酚醛树脂、环氧树脂、脲醛树脂等。事实上,加聚产物在未制成成品之前也常以“树脂”称之。如,聚乙烯树脂、聚丙烯树脂等。
3、聚酰胺类高分子化合物
聚酰胺类高分子化合物,其命名是在聚酰胺后面加上数字,该数字表示单体中碳原子的个数。例如,由己二胺和己二酸缩聚而成的高分子化合物,称为聚酰胺66;由癸二胺和癸二酸缩聚而成的高分子化合物,称为聚酰胺1010。
4、合成橡胶类高分子化合物
合成橡胶类高分子化合物,其命名是在橡胶二字的前面加上能代表单体名称的几个字。如1,3-丁二烯与苯乙烯的聚合物称为丁苯橡胶;2-氯-1,3-丁二烯的聚合物称为氯丁橡胶;1,3-丁二烯与丙烯腈的聚合物称为丁腈橡胶;异戊二烯的聚合物称为异戊橡胶,依此类推。
5、商品名称
商业上为了方便,常给某些合成纤维以商品名称,称为“某纶”。
(1)锦纶(或尼龙)聚酰胺类合成纤维,它的商品名称叫“锦纶”或“尼龙”,如,锦纶-6、锦纶-66,尼龙-610等。
凡是后面有两个或两个以上数字的,表示这种聚酰胺纤维是由二元胺和二元酸两种单体缩聚而成的。前面的数字是二元胺的碳原子数,后面的数字是二元酸的碳原子数。如,尼龙-610是由己二胺和癸二酸缩聚而成的。
凡是后面只有一个数字的,表示这种聚酰胺纤维是由某碳原子个数的内酰胺聚合而成的。如,锦纶-6是由己内酰胺聚合而成的。
(2)涤纶
聚酯纤维是指纤维分子中各个链节,都是以酯基相连接形成的高分子化合物,商品名称叫“涤纶”。目前,工业生产中产量最大的涤纶是聚对苯二甲酸乙二酯,俗称“的确良”。
另外,还有一些常见的高分子化合物的商品名称,如,“腈纶”、“丙纶”、“氯纶”、“维尼纶”,等等。
“腈纶”——聚丙烯腈纤维;
“丙纶”——聚丙烯纤维;
“氯纶”——聚氯乙烯纤维;
“维尼纶” ——聚乙烯醇缩甲醛纤维。
高分子化合物的集聚状态:
高聚物的性能不仅与高分子的相对分子质量和分子结构有关,也和分子间的互相关系,即聚集状态有关。同属线型结构的高聚物,有的具有高弹性(如天然橡胶),有的则表现出很坚硬(如聚苯乙烯),就是由于它们的聚集状态不同的缘故。即使是同一种高聚物由于聚集状态不同,性能也会有很大的差别,例如,化学纤维在制造过程中必须经过拉伸,就是为了改变聚物内部分子的聚集状态,使其分子链排列得整齐一些,从而提高分子间的吸引力,使制品强度更好。
晶相高聚物和非晶相高聚物
从结晶状态来看,线型结构的高聚物有晶相的和非晶相的。晶相高聚物由于其内部分子排列很有规律,分子间的作用力较大,故其耐热性和机械强度都比非晶相的高,熔限较窄。非晶相高聚物没有一定的熔点,耐热性能和机械强度都比晶相的低,由于高分子的分子链很长,要使分子链间的每一部分都作有序排列是很困难的,因此,高聚物都属于非晶相或部分结晶的。部分结晶高聚物的结晶性区域称为微晶;微晶的多少称为结晶度。例如,常见的聚氯乙烯、天然橡胶、聚酯纤维等高聚物都是属于线型非晶相的高聚物。只有少数是定向聚合得到的,如聚乙烯、聚苯乙烯等是部分晶相的。部分晶相的高聚物是由晶相的微晶部分镶嵌于无定形部分中而成的。
体型结构的高聚物,例如,酚醛塑料、环氧树脂等,由于分子链间有大量的交联,分子链不可能产生有序排列,因而都是非晶相的,对于少量交联的网状高聚物,因其交联少,链段间也可能产生局部的有序排列,但这种局部的有序排列,其分子间的吸引力不足以保持在这种状态,而容易恢复到原来的无序状态。
线型非晶相高聚物的聚集状态
线型非晶相高聚物具有三种不同的物理状态:玻璃态、高弹态和粘流态。犹如低分子物质具有三态(固态、液态和气态)一样,但是高聚物的三态和低分子的三态本质是不同的。橡胶和聚氯乙烯等塑料都是线型非晶相高聚物,但橡胶具有很好的弹性,而塑料则表现出良好的硬度,其原因就是由于它们在室温下所处的状态不同的缘故。塑料所处的状态是玻璃态,橡胶所处的状态是高弹态,把高聚物加热到熔融时所处的状态就是粘流态。
玻璃态的特征是形变很困难,硬度大;高弹态的特征是形变很容易,具有高弹性;粘流态的特征是形变能任意发生,具有流动性。这三种物理状态,随着温度的变化可互相转化。
高分子化合物的应用:
高分子的应用极 为广泛,遍及人们的 衣、食、住、行,国民经 济各部门和尖端技术。 功能高分子的问世, 使合成高分子的应用 发展到更精细、更高 级的水平,不仅对促 进工农业生产和尖端 技术,而且对探索生 命的奥秘、攻克癌症 和治疗遗传性疾病都 起着重要推动作用。 据推算,21世纪地 球上人口将超过100 亿,届时粮食、能源、 环境、资源等将成为 使人类社会更感困扰 的问题。对此,高分 子科学将发挥重要作用。如利用高分子调整水 分的蒸发和散失以改良土壤、绿化沙漠、扩大耕 地、控制生态体系,促进粮食增产; 制取高转化 率的光电池,用以分解水制氢和氧,用作燃料电 池和化工原料; 开发新型高分子催化剂,利用 空气中氮在常温常压下合成氨等。治理现代社 会的环境污染同样离不开高分子的应用。
但高分子易燃、易老化,不能降解,不被细 菌腐蚀,不为土壤吸收。大量使用后丢弃,已造 成严重公害。迫切需要研制能在自然环境中降 解、分解而不造成污染的新型高分子。这是高 分子科学今后发展的重要新课题、新方向之一。
⑸ 物质不都有3态吗
呵呵,物质有3态是老概念了,现在都不知道有多少态了...各种分类不同的。
大学物理会涉及固态,液态,气态,液晶态,等离子态,玻色-爱因斯坦凝聚态,费米子凝聚态
火是等离子态
可以随便找本大学普通物理的绪论一章看看,如果有兴趣
下边是贴的
具体来说吧:
1.固态
严格地说,物理上的固态应当指“结晶态”,也就是各种各样晶体所具有的状态。最常见的晶体是食盐(化学成份是氯化钠,化学符号是NaCl)。你拿一粒食盐观察(最好是粗制盐),可以看到它由许多立方形晶体构成。如果你到地质博物馆还可以看到许多颜色、形状各异的规则晶体,十分漂亮。物质在固态时的突出特征是有一定的体积和几何形状,在不同方向上物理性质可以不同(称为“各向异性”);有一定的熔点,就是熔化时温度不变。
在固体中,分子或原子有规则地周期性排列着,就像我们全体做操时,人与人之间都等距离地排列一样。每个人在一定位置上运动,就像每个分子或原子在各自固定的位置上作振动一样。我们将晶体的这种结构称为“空间点阵”结构。
2.液态
液体有流动性,把它放在什么形状的容器中它就有什么形状。此外与固体不同,液体还有“各向同性”特点(不同方向上物理性质相同),这是因为,物体由固态变成液态的时候,由于温度的升高使得分子或原子运动剧烈,而不可能再 保持原来的固定位置,于是就产生了流动。但这时分子或原子间的吸引力还比较大,使它们不会分散远离,于是液体仍有一定的体积。实际上,在液体内部许多小的区域仍存在类似晶体的结构——“类晶区”。流动性是“类晶区”彼此间可以移动形成的。我们打个比喻,在柏油路上送行的“车流”,每辆汽车内的人是有固定位置的一个“类晶区”,而车与车之间可以相对运动,这就造成了车队整体的流动。
3.气态
液体加热会变成气态。这时分子或原子运动更剧烈,“类晶区”也不存在了。由于分子或原子间的距离增大,它们之间的引力可以忽略,因此气态时主要表现为分子或原子各自的无规则运动,这导致了我们所知的气体特性:有流动性,没有固定的形状和体积,能自动地充满任何容器;容易压缩;物理性质“各向同性”。
显然,液态是处于固态和气态之间的形态。
4.非晶态——特殊的固态
普通玻璃是固体吗?你一定会说,当然是固体。其实,它不是处于固态(结晶态)。对这一点,你一定会奇怪。
这是因为玻璃与晶体有不同的性质和内部结构。
你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。也就是说玻璃没有一个固定的熔点。此外,它的物理性质也“各向同性”。这些都与晶体不同。
经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。只不过“类晶区”彼此不能移动,造成玻璃没有流动性。我们将这种状态称为“非晶态”。
严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。因此,“非晶态”可以作为另一种物态提出来。
除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。
5.液晶态——结晶态和液态之间的一种形态
“液晶”现在对我们已不陌生,它在电子表、计算器、手机、传呼机、微型电脑和电视机等的文字和图形显示上得到了广泛的应用。
“液晶”这种材料属于有机化合物,迄今人工合成的液晶已达5000多种。
这种材料在一定温度范围内可以处于“液晶态”,就是既具有液体的流动性,又具有晶体在光学性质上的“各向异性”。它对外界因素(如热、电、光、压力等)的微小变化很敏感。我们正是利用这些特性,使它在许多方面得到应用。
上述几种“物态”,在日常条件下我们都可以观察到。但是随着物理学实验技术的进步,在超高温、超低温、超高压等条件下,又发现了一些新“物态”。
6.超高温下的等离子态
这是气体在约几百万度的极高温或在其它粒子强烈碰撞下所呈现出的物态,这时,电子从原子中游离出来而成为自由电子。等离子体就是一种被高度电离的气体,但是它又处于与“气态”不同的“物态”——“等离子态”。
太阳及其它许多恒星是极炽热的星球,它们就是等离子体。宇宙内大部分物质都是等离子体。地球上也有等离子体:高空的电离层、闪电、极光等等。日光灯、水银灯里的电离气体则是人造的等离子体。
7.超高压下的超固态
在140万大气压下,物质的原子就可能被“压碎”。电子全部被“挤出”原子,形成电子气体,裸露的原子核紧密地排列,物质密度极大,这就是超固态。一块乒乓球大小的超固态物质,其质量至少在1000吨以上。
已有充分的根据说明,质量较小的恒星发展到后期阶段的白矮星就处于这种超固态。它的平均密度是水的几万到一亿倍。
8.超高压下的中子态
在更高的温度和压力下,原子核也能被“压碎”。我们知道,原子核由中子和质子组成,在更高的温度和压力下质子吸收电子转化为中子,物质呈现出中子紧密排列的状态,称为“中子态”。
已经确认,中等质量(1.44~2倍太阳质量)的恒星发展到后期阶段的“中子星”,是一种密度比白矮星还大的星球,它的物态就是“中子态”。
更大质量恒星的后期,理论预言它们将演化为比中子星密度更大的“黑洞”,目前还没有直接的观测证实它的存在。至于 “黑洞”中的超高压作用下物质又呈现什么物态,目前一无所知,有待于今后的观测和研究。
物质在高温、高压下出现了反常的物态,那么在低温、超低温下物质会不会也出现一些特殊的形态呢?下面讲到的两种物态就是这类情况。
9.超导态
超导态是一些物质在超低温下出现的特殊物态。最先发现超导现象的,是荷兰物理学家卡麦林·昂纳斯(1853~1926年)。1911年夏天,他用水银做实验,发现温度降到4.173K的时候(约-269℃),水银开始失去电阻。接着他又发现许多材料都又有这种特性:在一定的临界温度(低温)下失去电阻(请阅读“低温和超导研究的进展”专题)。卡麦林·昂纳斯把某些物质在低温条件下表现出电阻等于零的现象称为“超导”。超导体所处的物态就是“超导态”,超导态在高效率输电、磁悬浮高速列车、高精度探测仪器等方面将会给人类带来极大的益处。
超导态的发现,尤其是它奇特的性质,引起全世界的关注,人们纷纷投入了极大的力量研究超导,至今它仍是十分热门的科研课题。目前发现的超导材料主要是一些金属、合金和化合物,已不下几千种,它们各自对应有不同的“临界温度”,目前最高的“临界温度”已达到130K(约零下143摄氏度),各国科学家正在拼命努力向室温(300K或27℃)的临界温度冲刺。
超导态物质的结构如何?目前理论研究还不成熟,有待继续探索。
10.超流态
超流态是一种非常奇特的物理状态,目前所知,这种状态只发生在超低温下的个别物质上。
1937年,前苏联物理学家彼得·列奥尼多维奇·卡皮察(1894~1984年)惊奇地发现,当液态氦的温度降到2.17K的时候,它就由原来液体的一般流动性突然变化为“超流动性”:它可以无任何阻碍地通过连气体都无法通过的极微小的孔或狭缝(线度约10万分之一厘米),还可以沿着杯壁“爬”出杯口外。我们将具有超流动性的物态称为“超流态”。但是目前只发现低于2.17K的液态氦有这种物态。超流态下的物质结构,理论也在探索之中。
⑹ 什么是非晶态线型高聚物热力学三态
线型非晶态高分子有多重运动单元。这是因为高分子链很长,除了高分子链是一个运动单元外,由若干个链节组成的链段也是一个个运动单元,这与小分子只有一个运动单元不同。由于这些链段的转动使线型非晶态高分子化合物具有柔性和弹性。线型非晶态高分子化合物在不同温度下处于不同的力学状态(参见图3-9-3)。这是因为在不同温度下在应力作用时高分子化合物发生的形变特点不同。当温度不高时,在受到一定的应力作用时,高分子的链段只发生微小的伸缩和转动,去掉应力后链段将恢复原形。这种形变是“普弹形变”,像玻璃受力发生形变一样。这种力学状态叫玻璃态。
升高温度,当温度超过一定值(Tg玻璃化温度)时,高分子化合物的链段可以作较大程度旋转。这时,高分子化合物在应力作用下,形变率很大。若应力取消后,分子链中链段恢复原位。这种形变叫“高弹形变”,相应的力学状态即称为高弹态。
再升高温度,当温度超过Tf
(粘流化温度)后,不仅高分子链中链段开始旋转,而且整个高分子链也开始发生位移,这时高分子化合物变成粘性流体。若把应力去掉,高分二f链发生的形变不可逆转。这种力学状态即称为粘流态。粘流态是一般高分子材料加工成型时使用的状态。高分子化合物的玻璃态温度区间是Tc—→Tg。Tc叫脆化温度,此时温度较低,高分子化合物很脆,在较大应力作用下无承受能力。高分子化合物的高弹态温度区间是T。一Tf。高分子化合物的粘流态温度区间是Tf→Td。Td是分解温度。高分子化合物的分子量很大,并且分子间相互缠绕,因此分子间作用力很大,与化学键在同一数量级上,因此当温度升高到一定程度下,高分子化合物尚未气化前,它的共价键已经断裂,发生分解反应。
常温下处在玻璃态的高分子化合物可以做塑料、纤维。Tc,越低,Tg越高,塑料、纤维的使用温度范围越大。常温下处在高弹态的高分子化合物可做橡胶。Tg越低、Tf越高橡胶的使用温度范围越大。常温下处于粘流态的高分子化合物称为流动性树脂。结晶型、体型高分子化合物的力学状态与线型非晶态高分子化合物不同,它们一般无高弹态,而体型高分子化合物无粘流态。
⑺ 还有哪些东西是超出“三态”的范围的,请列举
非晶态、液晶态、等离子态、超固态、中子态、超导态、超流态
4.非晶态——特殊的固态
普通玻璃是固体吗?你一定会说,当然是固体。其实,它不是处于固态(结晶态)。对这一点,你一定会奇怪。
这是因为玻璃与晶体有不同的性质和内部结构。
你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。也就是说玻璃没有一个固定的熔点。此外,它的物理性质也“各向同性”。这些都与晶体不同。
经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。只不过“类晶区”彼此不能移动,造成玻璃没有流动性。我们将这种状态称为“非晶态”。
严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。因此,“非晶态”可以作为另一种物态提出来。
除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。
——————
5.液晶态——结晶态和液态之间的一种形态
“液晶”现在对我们已不陌生,它在电子表、计算器、手机、传呼机、微型电脑和电视机等的文字和图形显示上得到了广泛的应用。
“液晶”这种材料属于有机化合物,迄今人工合成的液晶已达5000多种。
这种材料在一定温度范围内可以处于“液晶态”,就是既具有液体的流动性,又具有晶体在光学性质上的“各向异性”。它对外界因素(如热、电、光、压力等)的微小变化很敏感。我们正是利用这些特性,使它在许多方面得到应用。
上述几种“物态”,在日常条件下我们都可以观察到。但是随着物理学实验技术的进步,在超高温、超低温、超高压等条件下,又发现了一些新“物态”。
————————
6.等离子态
这是气体在约几百万度的极高温或在其它粒子强烈碰撞下所呈现出的物态,这时,电子从原子中游离出来而成为自由电子。等离子体就是一种被高度电离的气体,但是它又处于与“气态”不同的“物态”——“等离子态”。
太阳及其它许多恒星是极炽热的星球,它们就是等离子体。宇宙内大部分物质都是等离子体。地球上也有等离子体:高空的电离层、闪电、极光等等。日光灯、水银灯里的电离气体则是人造的等离子体。
————————
7。超固态
在140万大气压下,物质的原子就可能被“压碎”。电子全部被“挤出”原子,形成电子气体,裸露的原子核紧密地排列,物质密度极大,这就是超固态。一块乒乓球大小的超固态物质,其质量至少在1000吨以上。
已有充分的根据说明,质量较小的恒星发展到后期阶段的白矮星就处于这种超固态。它的平均密度是水的几万到一亿倍。
————————
8。中子态
在更高的温度和压力下,原子核也能被“压碎”。我们知道,原子核由中子和质子组成,在更高的温度和压力下质子吸收电子转化为中子,物质呈现出中子紧密排列的状态,称为“中子态”。
已经确认,中等质量(1.44~2倍太阳质量)的恒星发展到后期阶段的“中子星”,是一种密度比白矮星还大的星球,它的物态就是“中子态”。
更大质量恒星的后期,理论预言它们将演化为比中子星密度更大的“黑洞”,目前还没有直接的观测证实它的存在。至于 “黑洞”中的超高压作用下物质又呈现什么物态,目前一无所知,有待于今后的观测和研究。
物质在高温、高压下出现了反常的物态,那么在低温、超低温下物质会不会也出现一些特殊的形态呢?下面讲到的两种物态就是这类情况。
——————————————————
9。超导态
超导态是一些物质在超低温下出现的特殊物态。最先发现超导现象的,是荷兰物理学家卡麦林·昂纳斯(1853~1926年)。1911年夏天,他用水银做实验,发现温度降到4.173K的时候(约-269℃),水银开始失去电阻。接着他又发现许多材料都又有这种特性:在一定的临界温度(低温)下失去电阻(请阅读“低温和超导研究的进展”专题)。卡麦林·昂纳斯把某些物质在低温条件下表现出电阻等于零的现象称为“超导”。超导体所处的物态就是“超导态”,超导态在高效率输电、磁悬浮高速列车、高精度探测仪器等方面将会给人类带来极大的益处。
超导态的发现,尤其是它奇特的性质,引起全世界的关注,人们纷纷投入了极大的力量研究超导,至今它仍是十分热门的科研课题。目前发现的超导材料主要是一些金属、合金和化合物,已不下几千种,它们各自对应有不同的“临界温度”,目前最高的“临界温度”已达到130K(约零下143摄氏度),各国科学家正在拼命努力向室温(300K或27℃)的临界温度冲刺。
超导态物质的结构如何?目前理论研究还不成熟,有待继续探索。
——————————————————————
10.超流态
超流态是一种非常奇特的物理状态,目前所知,这种状态只发生在超低温下的个别物质上。
1937年,前苏联物理学家彼得·列奥尼多维奇·卡皮察(1894~1984年)惊奇地发现,当液态氦的温度降到2.17K的时候,它就由原来液体的一般流动性突然变化为“超流动性”:它可以无任何阻碍地通过连气体都无法通过的极微小的孔或狭缝(线度约10万分之一厘米),还可以沿着杯壁“爬”出杯口外。我们将具有超流动性的物态称为“超流态”。但是目前只发现低于2.17K的液态氦有这种物态。超流态下的物质结构,理论也在探索之中。
上面介绍的只是迄今发现的10 种物态,有文献归纳说还存在着更多种类的物态,例如:超离子态、辐射场态、量子场态,限于篇幅,这里就不一一列举了。我们相信,随着科学的发展,我们一定会认识更多的物态,解开更多的谜,并利用它们奇特的性质造福于人类。
参考资料:http://www.zznet.com.cn/hdz05/news/wzjg.asp
⑻ 热固性塑料和热塑性塑料的不同
从成型加工性能上可分为热塑性塑料和热固性塑料.
1、热塑性塑料:这类塑料的特点是可以随着温度的升高而变软,被塑制成型,冷却后变的坚硬,这个过程可以反复多次进行。其典型的品种有聚氯乙烯,聚乙烯,聚丙烯,聚苯乙烯,ABS,尼龙,聚碳酸脂,有机玻璃等。
2、热固性塑料:这类塑料的特点是在一定温度下,经过一定的时间加热或加入固化剂后,即可固化。固化后的塑料,质地坚硬而不能溶于溶剂中,也不能用加热的方法使之再软化,如果温度过高就会分解。其典型品种有酚醛树脂,环氧树脂,不饱和聚酯等。
我认为你所说的检验部分的描述是错误的,塑料可以分为三态:粘流态、高弹态、玻璃态。在较低温度下塑料一般呈玻璃态至高弹态,塑料在这一范围内才有使用价值。随着温度的升高,塑料由高弹态变为粘流态,也就是呈流动状态,这时就可以用不同的塑料成型方法将塑料加工成不同形状的塑料制品了。不同种类的塑料其粘流态、高弹态、玻璃态的温度范围是不同的。
⑼ 热固性塑料和热塑性塑料的不同
根据塑料受热后的性质不同分为热塑性塑料和热固性塑料
热塑性塑料分子结构都是线型结构,在受热时发生软化或熔化,可塑制成一定的形状,冷却后又变硬。在受热到一定程度又重新软化,冷却后又变硬,这种过程能够反复进行多次。如聚氯乙烯、聚乙烯、聚苯乙烯等。热塑性塑料成型过程比较简单,能够连续化生产,并且具有相当高的机械强度,因此发展很快。
热固性塑料的分子结构是体型结构,在受热时也发生软化,可以塑制成一定的形状,但受热到一定的程度或加入少量固化剂后,就硬化定型,再加热也不会变软和改变形状了。热固性塑料加工成型后,受热不再软化,因此不能回收再用,如酚醛塑料、氨基塑料、环氧树脂等都属于此类塑料。热固性塑料成型工艺过程比较复杂,所以连续化生产有一定的困难,但其耐热性好、不容易变形,而且价格比较低廉.
⑽ 热塑性塑料和热固性塑料有什么区别
一、热塑性塑料
加热时变软以至流动,冷却变硬,这种过程是可逆的,可以版反复进行。权聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛,聚碳酸酪,聚酰胺、丙烯酸类塑料、其它聚烯侵及其共聚物、聚讽、聚苯醚,氯化聚醚等都是热塑性塑料。热塑性塑料中树脂分子链都是线型或带支链的结构,分子链之间无化学键产生,加热时软化流动.冷却变硬的过程是物理变化。
二、热固性塑料
第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。正是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。这种材料称为热固性塑料。
热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三度的网状结构,不仅不能再熔触,在溶剂中也不能溶解。酚醛、服醛、三聚氰胺甲醛、环氧、不饱和聚酯、有 机硅等塑料,都是热固性塑料。